{9 C2833x/C2823x C/C++ Header Files and Peripheral Examples Quick Start
TEXAS

Version 1.10

INSTRUMENTS February 15, 2008

C2833x/C2823x C/C++ Header Files and Peripheral
Examples Quick Start

TS o7 THT o o Yo N 2
1o o 11T (o o - 2
P2 B o] To g 1 o] 2R 3
2.2 Where Files are Located (Directory StruCtUre) .......ooouueeiiiiiiiiiiieeeee e 3
Understanding The Peripheral Bit-Field Structure Approach ...........cccceiiivismmmnrnnnniisseeeennnenns 4
Peripheral EXample Projects .......cccciiiiiiiiimmmmmmiiinisiisssssss s s ssssssss s s s s sssmmsss s s s 5
4.1 GetliNG SEAMEA ... e e e e e e e e e e e 5
4.2 Example Program STTUCIUE..........uuiiiiiiei et e e 11
2 B o 0 (o= 0o To [ PSPPSR 12
4.2.2 Linker Command FilES ........ooiuuuiiiiiiii e 12
4.3 Example Program FIOW ...ttt e e e e 14
4.4 INCIUAEA EXAMIPIES: ...ttt e e e e e e e e e e e e 15
4.5 Executing the Examples From Flash..........cccuiiiiiii e 17
4.6 Converting Floating-Point Compiled Examples to Fixed-Point and Vice Versa...................... 20
Steps for Incorporating the Header Files and Sample Code..........ccuiinnnnnnnnnnnnnnnnnnn, 23
5.1 BefOre YOU DEGIN ....eeiiiieii e 23
5.2 Including the DSP2833x Peripheral Header Files .............oooiiiiiiii e 23
5.3 Including Common EXample COE.........ooiiuiiiiiiiiii et 27
Troubleshooting Tips & Frequently Asked QUESEIONS .......cccceriiiiiiiiisemmmmrn s 29
6.1 Effects of read-modify-write INStrUCHIONS. ........cooiiiiiiiii e 31
6.1.1 Registers with multiple flag bits in which writing a 1 clears that flag..............ccceee. 32
6.1.2 Registers With Volatile BitS. ........c.ccooiiiiiii e 32
Migration Tips for moving from the TMS320x280x or TMS320x281x header files to the
TMS320x2833x/TMS320x2823x header files .......ccuvvemerriiimmmriiiisre e 33
= T () 0 o | (=T 11 36
8.1 Header File Support — DSP2833X_headers ..o 36
8.1.1 DSP2833x Header Files —Main Files ... 36
8.1.2 DSP2833x Header Files — Peripheral Bit-Field and Register Structure Definition
IS e a e e 37
8.1.3 Code Composer .gel FIlES ......coui i 38
8.1.4 Variable Names and Data SeCtionsS............ccoiiiiiiiiiiiii e 38
8.2 Common Example Code — DSP2833X_COMMON .......ccuuiiiiiiiiiiiiiiiieeeee e 40
8.2.1 Peripheral Interrupt Expansion (PIE) BlIoCK SUPPOIt........cceeveriiiiiiiiiiiiiee e 40
8.2.2 Peripheral SPeCIfiC FIleS.......uuuiiiiiiiiii e 41
8.2.3  Utility FUNCLION SOUICE FIlES .....eeeiiiiiiiie e 42
8.2.4 Example Linker .CMA fil€S .......eeeiiiiiiiiiie e 42
8.2.5 Example Library .l Files ........ooooiii e 43
Detailed ReVviSion HiSTOrY: ... s s s sssss s s s 44



) *5‘ TEXAS
V1.10 Quick Start Readme INSTRUMENTS

1 Device Support:

This software package supports 2833x and 2823x devices. This includes the following:
TMS320F28335, TMS320F28334, TMS320F28332, TMS320F28235, TMS320F28234, and
TMS320F28232.

Throughout this document, TMS320F28335, TMS320F28334, TMS320F28332,
TMS320F28235, TMS320F28234, and TMS320F28232 are abbreviated as F28335, F28334
F28332, F28235, F28234, and F28232 respectively.

2 Introduction:

The C2833x/C2823x C/C++ peripheral header files and example projects facilitate writing in
C/C++ Code for the Texas Instruments TMS320x2833x DSPs. The code can be used as a
learning tool or as the basis for a development platform depending on the current needs of
the user.

e Learning Tool:

This download includes several example Code Composer Studio™! projects for a
‘2833x/'2823x development platform. One such platform is the eZdsp™' F28335 USB
from Spectrum Digital Inc. (www.spectrumdigital.com).

These examples demonstrate the steps required to initialize the device and utilize the on-
chip peripherals. The provided examples can be copied and modified giving the user a
platform to quickly experiment with different peripheral configurations.

These projects can also be migrated to other devices by simply changing the memory
allocation in the linker command file.

e  Development Platform:

The peripheral header files can easily be incorporated into a new or existing project to
provide a platform for accessing the on-chip peripherals using C or C++ code. In
addition, the user can pick and choose functions from the provided code samples as
needed and discard the rest.

To get started this document provides the following information:

e  Overview of the bit-field structure approach used in the C2833x/C2823x C/C++
peripheral header files.

e  Overview of the included peripheral example projects.
e  Steps for integrating the peripheral header files into a new or existing project.

e Troubleshooting tips and frequently asked questions.

" Code Composer Studio is a trademark of Texas Instruments (www.ti.com).
" eZdsp is a trademark of Spectrum Digital Inc (www.spectrumdigital.com).
Trademarks are the property of their respective owners.



{’." TexASs )
INSTRUMENTS V1.10 Quick Start Readme

e Migration tips for users moving from the DSP281x and DSP280x header files to the
DSP2833x/2823x header files.

Finally, this document does not provide a tutorial on writing C code, using Code Composer
Studio, or the C28x Compiler and Assembler. It is assumed that the reader already has a
28335 hardware platform setup and connected to a host with Code Composer Studio
installed. The user should have a basic understanding of how to use Code Composer Studio
to download code through JTAG and perform basic debug operations.

2.1 Revision History

Version 1.10

O This version includes minor corrections to the header and common files, and adds
support for F2823x non-floating point unit examples. These examples use the same
common and header files as the F2833x examples. A detailed revision history can be
found in Section 9.

Version 1.03

O This version includes minor additions to the header and common files, including an
upgraded revision to the SFO library V5. A detailed revision history can be found in
Section 9.

Version 1.02

O This version includes minor additions to the gel files and updates to the
source/example files. A detailed revision history can be found in Section 9.

Version 1.01

U This version fixes some typos and minor errors in the DSP2833x header files and
examples. A detailed revision history can be found in Section 9.

Version 1

O This version is the first release of the DSP2833x header files and examples.

=l | ) D3P2533x

2.2 Where Files are Located (Directory Structure) = Bmd
u]n

) DaP2dz3x_examples
) DSP2833%_comman

+

As installed, the C2833x/C2823x C/C++ Header Files and
Peripheral Examples is partitioned into a well-defined

directory structure. By default, the source code is installed ) emd

into the c:\tidcs\c28\DSP2833x\<version> directory. = gel
) include

Table 1 describes the contents of the main directories used 0 b

by DSP2833x/2823x header files and peripheral examples: 3 source

+

) DEP2a33x_examples
) DSP2a33x_headers
i) crnd
=) gl
) include

) source



V'1.10 Quick Start Readme

*5‘ TeExAS
INSTRUMENTS

Table 1. DSP2833x Main Directory Structure
Directory Description
<base> Base install directory. By default this is c:\tidcs\c28\DSP2833x\v100. For the rest
of this document <base> will be omitted from the directory names.
<base>\doc Documentation including the revision history from the previous release.

<base>\DSP2833x_headers

Files required to incorporate the peripheral header files into a project .
The header files use the bit-field structure approach described in Section 3.
Integrating the header files into a new or existing project is described in Section 5.

<base>\DSP2833x_examples

Example Code Composer Studio projects compiled with floating point unit
enabled. These example projects illustrate how to configure many of the on-chip
peripherals. An overview of the examples is given in Section 4.

<base>DSP2833x_common

Common source files shared across example projects to illustrate how to perform
tasks using header file approach. Use of these files is optional, but may be useful
in new projects. A list of these files is in Section 8.

<base>\DSP2823x_examples

Example Code Composer Studio projects compiled with floating point unit
disabled. These example projects illustrate how to configure many of the on-chip
peripherals. An overview of the examples is given in Section 4.

Under the DSP2833x_headers and DSP2833x_common directories the source files are
further broken down into sub-directories each indicating the type of file. Table 2 lists the sub-

directories and describes

Table 2.

the types of files found within each:

DSP2833x Sub-Directory Structure

Sub-Directory

Description

DSP2833x_headers\cmd

Linker command files that allocate the bit-field structures described in Section 3.

DSP2833x_headers\source

Source files required to incorporate the header files into a new or existing project.

DSP2833x_headers\include

Header files for each of the on-chip peripherals.

DSP2833x_common\cmd

Example memory command files that allocate memory on the devices.

DSP2833x_common\include

Common .h files that are used by the peripheral examples.

DSP2833x_common\source

Common .c files that are used by the peripheral examples.

DSP2833x_common\lib

Common library (.lib) files that are used by the peripheral examples.

DSP2833x_common\gel

Code Composer Studio GEL files for each device. These are optional.

The following application

3 Understanding The Peripheral Bit-Field Structure Approach

note includes useful information regarding the bit-field peripheral

structure approach used by the header files and examples.

This method is compared

to traditional #define macros and topics of code efficiency and

special case registers are also addressed. The information in this application note is
important to understand the impact using bit fields can have on your application code.

Programming TMS320x28xx and 28xxx Peripherals in C/C++ (SPRAA85)



{’." TEXAS

INSTRUMENTS V1.10 Quick Start Readme

4 Peripheral Example Projects

This section describes how to get started with and configure the peripheral examples
included in the C2833x/C2823x Header Files and Peripheral Examples software package.

NOTE:

Because the ‘2833x devices are floating-point devices, the ‘2833x
peripheral examples are configured for floating-point by default.
Therefore, Code Composer Studio V3.3+ with C2000 CodeGenTools
V5.x, which includes fpu32 floating-point support, is required to build
and run these examples. To run these examples on Code Composer
3.1 and earlier, they must be re-configured for fixed-point (For more
information, see Section 4.6).

Because the ‘2823x devices are fixed-point devices, the ‘2823x
peripheral examples are configured for non-floating-point by default.
These examples run as-is on Code Composer 3.3 and earlier.

4.1 Getting Started

To get started, follow these steps to load the 32-bit CPU-Timer example. Other examples are
set-up in a similar manner.

1. Have a hardware platform, such as the eZdsp F28335 USB, connected to a host with
Code Composer Studio installed.

NOTE: As supplied, the '2833x and ‘2823x example projects are built for the
‘28335/°28235 device. If you are using another 2833x or 2823x device, the memory
definition in the linker command file (.cmd) will need to be changed and the project
rebuilt.

2. Load the example’s GEL file (.gel) or Project file (.pjt).

Each example includes a Code Composer Studio GEL file to help automate loading of
the project, compiling of the code and populating of the watch window. Alternatively, the
project file itself (.pjt) can be loaded instead of using the included GEL file.

To load the '2833x CPU-Timer example’s GEL file follow these steps:

a.
b.

In Code Composer Studio: File->Load GEL

Browse to the CPU Timer example directory: DSP2833x_examples\cpu_timer (or
DSP2823x_examples\cpu_timer)

Select Example_2833xCpuTimer.gel (or Example_2823xCpuTimer.gel) and click on
open.

From the Code Composer GEL pull-down menu select
DSP2833x CpuTimerExample-> Load _and_Build_Project (for ‘2833x devices)
DSP2823x CpuTimerExample-> Load _and_Build_Project (for ‘2823x devices)



*53 TeExAS
V1.10 Quick Start Readme INSTRUMENTS

This will load the project and build compile the project.
3. Edit DSP28_Device.h

Edit the DSP2833x_Device.h file and make sure the appropriate device is selected. By
default the 28335 is selected. For ‘2823x devices, the ‘2833x counterpart is selected.
For instance, if using F28235, DSP28_28335 is selected as the TARGET.

/********************************************************************

* DSP2833x_headers\include\DSP2833x_Device.h

********************************************************************/

#define TARGET 1
// User To Select Target Device:
#define DSP28_28335 TARGET

#define DSP28_28334 0
#define DSP28_28332 0

4. Edit DSP2833x_Examples.h

Edit DSP2833x_Examples.h and specify the clock rate, the PLL control register value
(PLLCR and DIVSEL). These values will be used by the examples to initialize the
PLLCR register and DIVSEL bits.

The default values will result in a 150Mhz SYSCLKOUT frequency.



{’." TexASs )
INSTRUMENTS V1.10 Quick Start Readme

/********************************************************************

* DSP2833x_common\include\DSP2833x_Examples.h
*‘k*‘k*‘k*‘k***‘k*‘k‘k‘k***‘k*‘k*‘k*‘k***‘k*‘k*‘k***‘k*‘k*‘k*‘k************************/

Specify the PLL control register (PLLCR) and divide select (DIVSEL) value.

//#define DSP28_DIVSEL 0 // Enable /4 for SYSCLKOUT (default at reset)
//#define DSP28_DIVSEL 1 // Disable /4 for SYSCKOUT

#define DSP28_DIVSEL 2 // Enable /2 for SYSCLKOUT

//#define DSP28_DIVSEL 3 // Enable /1 for SYSCLKOUT

#define DSP28_PLLCR 10
//#define DSP28_PLLCR
//#define DSP28_PLLCR
//#define DSP28_PLLCR
//#define DSP28_PLLCR
//#define DSP28_PLLCR
//#define DSP28_PLLCR
//#define DSP28_PLLCR
//#define DSP28_PLLCR
//#define DSP28_PLLCR
//#define DSP28_PLLCR

O N WK U1Toy J 0 W0

// (Default at reset) PLL is bypassed in this mode

In DSP2833x_Examples.h, also specify the SYSCLKOUT rate. This value is used to
scale a delay loop used by the examples. The default value is for a 150 Mhz
SYSCLKOUT. If you have a 100 MHz device you will need to adjust these settings
accordingly.

/*‘k***‘k*‘k‘k‘k***‘k*‘k*‘k*‘k***‘k*‘k*‘k***‘k*‘k*‘k*‘k**‘k‘k*‘k************************
* DSP2833x_common\include\DSP2833x_Examples.h

********************************************************************/

#define CPU_RATE 6.667L // for a 150MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE 7.143L // for a 140MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE 8.333L // for a 120MHz CPU clock speed (SYSCLKOUT)

In DSP2833x_Examples.h also specify the maximum SYSCLKOUT frequency
(150MHz or 100MHz) by setting it to 1 and the other to 0. This value is used by those
examples with timing dependent code (i.e. baud rates or other timing parameters) to
determine whether 150MHz code or 100MHz code should be run.

The default value is for 150Mhz SYSCLKOUT. If you have a 100MHz device you will
need to adjust these settings accordingly. If you intend to run examples which use
these definitions at a different frequency, then the timing parameters in those examples
must be directly modified accordingly regardless of the setting here.



) *5‘ TEXAS
V1.10 Quick Start Readme INSTRUMENTS

/********************************************************************

* DSP2833x_common\include\DSP2833x_Examples.h

********************************************************************/

#define CPU_FRQ_100MHZ 0 // 100 MHz CPU Freq — 1 for 100 MHz devices
#define CPU_FRQ_150MHZ 1 // 150 Mhz CPU Freq - default, 1 for 150 MHz devices
/)

5. Review the comments at the top of the main source file:
Example_2833xCpuTimer.c.

A brief description of the example and any assumptions that are made and any external
hardware requirements are listed in the comments at the top of the main source file of
each example. In some cases you may be required to make external connections for the
example to work properly.

6. Perform any hardware setup required by the example.

Perform any hardware setup indicated by the comments in the main source. The CPU-
Timer example only requires that the hardware be setup for “Boot to SARAM” mode.
Other examples may require additional hardware configuration such as connecting pins
together or pulling a pin high or low.

Table 3 shows a listing of the boot mode pin settings for your reference. Refer to the
documentation for your hardware platform for information on configuring the boot mode
pins. For more information on the ‘2833x/2823x boot modes refer to the device specific
Boot ROM Reference Guide.



{’." TexASs )
INSTRUMENTS V1.10 Quick Start Readme

Table 3. 2833x/2823x Boot Mode Settings

GPIO87 | GPIO86 | GPIO85 | GPlO84 Mode
XA15 XA14 XA13 XA12

PU PU PU PU

1 1 1 1 Boot to flash 0x33FFF6

1 1 1 0 Call SCI-A boot loader

1 1 0 1 Call SPI-A boot loader

1 1 0 0 Call 12C boot loader

1 0 1 1 Call eCAN-A boot loader

1 0 1 0 Call McBSP-A boot loader

1 0 0 1 Boot to XINTF x16 0x100000
1 0 0 0 Boot to XINTF x32 0x100000
0 1 1 1 Boot to OTP 0x380400

0 1 1 0 Call parallel GPIO boot loader
0 1 0 1 Call parallel XINTF boot loader
0 1 0 0 Boot to MO SARAM 0x000000
0 0 1 1 Branch to check boot mode
0 0 1 0 Boot to flash, bypass ADC cal
0 0 0 1 Boot to SARAM, bypass ADC cal
0 0 0 0 Boot to SCI-A, bypass ADC cal

7. Load the code

Once any hardware configuration has been completed, from the Code Composer GEL
pull-down menu select

DSP2833x CpuTimerExample-> Load Code (for ‘2833x devices)

This will load the .out file into the 28x device, populate the watch window with variables of
interest, reset the part and execute code to the start of the main function. The GEL file is
setup to reload the code every time the device is reset so if this behavior is not desired,
the GEL file can be removed at this time. To remove the GEL file, right click on its name
and select remove.

8. Run the example, add variables to the watch window or examine the memory
contents.

9. Experiment, modify, re-build the example.

If you wish to modify the examples it is suggested that you make a copy of the entire
header file packet to modify or at least create a backup of the original files first. New
examples provided by TI will assume that the base files are as supplied.

Sections 4.2 and 4.3 describe the structure and flow of the examples in more detail.



*53 TeExAs

V1.10 Quick Start Readme INSTRUMENTS

10

10. When done, remove the example’s GEL file and project from Code Composer
Studio.

To remove the GEL file, right click on its name and select remove. The examples use the
header files in the DSP2833x_headers directory and shared source in the
DSP2833x_common directory. Only example files specific to a particular example are
located within in the example directory.

Note: Most of the example code included uses the .bit field structures to access
registers. This is done to help the user learn how to use the peripheral and device.
Using the bit fields has the advantage of yielding code that is easier to read and
modify. This method will result in a slight code overhead when compared to using
the .all method. In addition, the example projects have the compiler optimizer
turned off. The user can change the compiler settings to turn on the optimizer if
desired.



{’." TexASs )
INSTRUMENTS V1.10 Quick Start Readme

4.2 Example Program Structure

- ﬁ Example_2833xCpuTimer.pjt {Debug)
[C7] Dependent Projects

[23 Dacuments Common (shared) Source Code
|2 DsRYBICS Config Used by more then one example. These files
[C3 Generated Files contain generic functions for setting up peripherals
+-_1 Include to a defined state or functions that may be useful to
[Z3 Libraries re-use in different applications.
= a Source
%] DsP2a33:_CodeStartBranch!ssm
] DSP2a33:_CpuTimers.c DSP2833x_GilobalVariableDefs.c
E DSP2533x%_Defaultlsr.c This source file is required to use the header files.

] DsP2E33x_clobalvariableDefs.c

(] DSP2E33x_Piect.c

#] DSP2833x_Pisvert.c :} Shared Source Code

] DSP2a33_SystChrl.c

#] DSP2833x_usDelay.asm <  Example Specific Source Code
3 Example_2833xCpuTimer.c<\
ZEAAS_PAM_Ink, cnd
DSP2835:_Headers_nonB10S,cmd

Memory block specific linker command file

DSP2833x_Headers nonBIOS.cmd
Linker file required by the peripheral specific header files.

Each of the example programs has a very similar structure. This structure includes unique
source code, shared source code, header files and linker command files.

NOTE:

The ‘2823x example programs use the same source and include files as the ‘2833x example

programs. The only difference between the ‘2823x examples and the 2833x examples is that
‘2823x programs are compiled for fixed-point, and 2833x programs are compiled for floating-
point.

/********************************************************************

* DSP2833x_examples\cpu_timer\Example_2833xCpuTimer.c
********************************************************************/

#include "DSP2833x_Device.h" // DSP2833x Headerfile Include File
#include "DSP2833x_Examples.h" // DSP2833x Examples Include File

e DSP2833x_Device.h

This header file is required to use the header files. This file includes all of the required
peripheral specific header files and includes device specific macros and typedef
statements. This file is found in the <base>\DSP2833x_headers\include directory.

e DSP2833x_Examples.h

This header file defines parameters that are used by the example code. This file is not
required to use just the DSP2833x peripheral header files but is required by some of the

11



*53 TeExAs

V1.10 Quick Start Readme INSTRUMENTS

common source files. This file is found in the <base>\DSP2833x_commonlinclude
directory.

4.2.1 Source Code

Each of the example projects consists of source code that is unique to the example as well as
source code that is common or shared across examples.

e DSP2833x_GlobalVariableDefs.c

Any project that uses the DSP2833x peripheral header files must include this source file.
In this file are the declarations for the peripheral register structure variables and data
section assignments. This file is found in the <base>\DSP2833x_headers\source
directory.

e Example specific source code:

Files that are specific to a particular example have the prefix Example_2833x (or
Example_2823x) in their filename. For example Example_2833xCpuTimer.c is specific
to the CPU Timer example and not used for any other example. Example specific files
are located in the <base>\DSP2833x_examples\<example> directory for ‘2833x devices
and in the <base>\DSP2823x_examples\<example> directory for °2823x devices.

¢ Common source code:

The remaining source files are shared across the examples. These files contain
common functions for peripherals or useful utility functions that may be re-used. Shared
source files are located in the DSP2833x_shared\source directory. Users may choose to
incorporate none, some, or the entire shared source into their own new or existing
projects.

4.2.2 Linker Command Files

12

Each example uses two linker command files. These files specify the memory where the
linker will place code and data sections. One linker file is used for assigning compiler
generated sections to the memory blocks on the device while the other is used to assign the
data sections of the peripheral register structures used by the DSP2833x peripheral header
files.

e Memory block linker allocation:

The linker files shown in Table 4 are used to assign sections to memory blocks on the device.
These linker files are located in the <base>\DSP2833x_common\cmd directory. Each
example will use one of the following files depending on the memory used by the example.



{’." TexASs )
INSTRUMENTS V1.10 Quick Start Readme

Table 4. Included Memory Linker Command Files

Memory Linker Command Location Description
File Examples
28335 RAM _ Ink.cmd DSP2833x_common\cmd | 28335/28235 memory linker command

file. Includes all of the internal SARAM
blocks on a 28335/28235 device. “RAM”
linker files do not include flash or OTP

blocks.

28334 _RAM_Ink.cmd DSP2833x_common\cmd | 28335/28235 SARAM memory linker
command file.

28332_RAM _Ink.cmd DSP2833x_common\cmd | 28334/28234 SARAM memory linker
command file.

F28335.cmd DSP2833x_common\cmd | F28335/F28235 memory linker command

file. Includes all Flash, OTP and CSM
password protected memory locations.

F28334.cmd DSP2833x_common\cmd | F28334/F28234 memory linker command
file.

F28332.cmd DSP2833x_common\cmd | F28332/F28232 memory linker command
file.

e Header file structure data section allocation:

Any project that uses the header file peripheral structures must include a linker command
file that assigns the peripheral register structure data sections to the proper memory
location. These files are described in Table 5.

Table 5. DSP2833x Peripheral Header Linker Command File

Header File Linker Command File Location Desctription

DSP2833x_Headers BIOS.cmd DSP2833x_headers\cmd | Linker .cmd file to assign the header file
variables in a BIOS project. This file must be
included in any BIOS project that uses the
header files. Refer to section 5.2.

DSP2833x_Headers_nonBIOS.cmd | DSP2833x_headers\cmd | Linker .cmd file to assign the header file
variables in a non-BIOS project. This file must
be included in any non-BIOS project that uses
the header files. Refer to section 5.2.

13



) *5‘ TEXAS
V1.10 Quick Start Readme INSTRUMENTS

4.3 Example Program Flow

All of the example programs follow a similar recommended flow for setting up a 2833x/2823x
device. Figure 1 outlines this basic flow:

m Boot ROM

DSP2833x_CodeStartBranch.asm
Boot Sequence e Used to re-direct code execution from the boot

entry point to the C Init routine.

* e Code can be configured to disable the
WatchDog if the WD is timing out before main()
is reached.
DSP2833x_CodeStartBranch.asm e  Assigned to the BEGIN section by the linker.
Disable WD (Optional) e Located at 0x000000 for Boot to MO
Branch to C Init Routine ¢ Located at 0x33FFF6 for Boot to Flash
C Init Routine
* e The Compiler's boot.asm which is
‘ C Init P/ automatically included with the runtime
library. This will set OBJMODE to 28x.
main () v Init PLL, Turn on Peripheral Clocks and set the
( — P clock pre-scalers
Initialize System Control Disable the WatchDog
Configure GPIO Pins to their peripheral function
y or as an input or output as required by the
Initalize GPIO . example.

Initalize the entire PIE Vector Table with pointers
Y to default Interrupt Service Routines (ISRs) found
in DSP2833x_Defaultlsr.c. It is useful for debug
purposes to have the entire table initalized even if
the ISR is not going to be used.

Initialize PIE Vector Table

Y

Initalize Peripherals

Remap PIE vectors used by the example to ISR
functions found within the example program.

Y

Example Specific Code
Enable Interrupts

} Enable the required PIE and CPU interrupts.
Any additional code required for the example.

Initalize the peripherals as required by the
example.

Pt

Additional Functions and
Interrupt Service Routines

Figure 1. Flow for Example Programs

14



‘v’f TexASs
INSTRUMENTS

V'1.10 Quick Start Readme

4.4

Included Examples:

Table 6. Included Examples

Example

Description

adc_dma

ADC example with ADC interfaced to DMA. ChannelA0-A3 are converted 10 times.

adc_seq_ovd_tests

ADC test using the sequencer override feature.

adc_segmode_test

ADC Seq Mode Test. Channel A0 is converted forever and logged in a buffer

adc_soc ADC example to convert two channels: ADCINA3 and ADCINA2. Interrupts are
enabled and PWM1 is configured to generate a periodic ADC SOC on SEQ1.
cpu_timer Configures CPU Timer0 and increments a count each time the ISR is serviced.

dma_ram_to_ram

Example of RAM to RAM data block transfer using the DMA.

dma_xintf_to_ram

Example of XINTF to RAM data block transfer using the DMA.

ecan_a_to_b_xmit

Transmit from eCANa to eCANb

ecan_back2back

eCAN self-test mode example. Transmits eCAN data back-to-back at high speed
without stopping.

ecap_apwm

This example sets up the alternate eCAP pins in the APWM mode

ecap_capture_pwm

Captures the edges of a ePWM signal.

epwm_deadband

Example deadband generation via ePWM3

epwm_timer_interrupts

Starts ePWM1-ePWMB6 timers. Every period an interrupt is taken for each ePWM.

epwm_trip_zone

Uses the trip zone signals to set the ePWM signals to a particular state.

epwm_up_aq

Generate a PWM waveform using an up count time base ePWM1-ePWM3 are
used.

epwm_updown_aq

Generate a PWM waveform using an up/down time base. ePWM- ePWMS3 are used.

egep_freqcal

Frequency cal using eQEP1

egep_pos_speed

Pos/speed calculation using eQEP1

external_interrupt

Configures GPIOO0 as XINT1 and GPIO1 as XINT2. The interrupts are fired by
toggling GPIO30 and GPIO31 which are connected to XINT1 (GPIO0) and XINT2
(GP10O1) externally by the user.

flash ePWM timer interrupt project moved from SARAM to Flash. Includes steps that
were used to convert the project from SARAM to Flash. Some interrupt service
routines are copied from FLASH to SARAM for faster execution.

fpu Two projects illustrating the difference between code compiled with floating-point
hardware (FPU) and fixed-point hardware (using software to simulate floating-point).
Note: This example is not included in the DSP2823x_examples directory because
DSP2823x devices do not have an FPU.

gpio_setup Three examples of different pinout configurations.

gpio_toggle Toggles all of the I/O pins using different methods — DATA, SET/CLEAR and
TOGGLE registers. The pins can be observed using an oscilloscope.

hrpwm Sets up ePWM1-ePWM4 and controls the edge of output A using the HRPWM
extension. Both rising edge and falling edge are controlled.

hrpwm_sfo Use Tl's MEP Scale Factor Optimizer (SFO) library to change the HRPWM. This

version of the SFO library supports HRPWM on ePWM channels 1-4 only.

hrpwm_sfo_v5

Use TI's MEP Scale Factor Optimizer (SFO) library version 5 to change the
HRPWM. This version of the SFO library supports HRPWM on up to 16 ePWM
channels (if available)

hrpwm_slider

This is the same as the hrpwm example except the control of CMPAHR is now
controlled by the user via a slider bar. The included .gel file sets up the slider.

i2c_eeprom

Communicate with the EEPROM on the eZdsp F28335 USB platform via 12C

15




*53 TeExAs

V1.10 Quick Start Readme INSTRUMENTS

Included Examples Continued...

16

Ipm_haltwake Puts device into low power halt mode. GPIOO0 is configured to wake the device from
halt when an external high-low-high pulse is applied to it.
Ipm_idlewake Puts device into low power idle mode. GPIOO is configured as XINT1 pin. When an

XINT1 interrupt occurs due to a falling edge on GPIOO, the device is woken from
idle.

Ipm_standbywake

Puts device into low power standby mode. GPIOO is configured to wake the device
from halt when an external high-low-high pulse is applied to it.

mcbsp_loopback

McBSP-A example that uses the peripheral’s loop-back testmode to send data.

mcbsp_loopback_dma

McBSP-A example that uses the peripheral’s loop-back testmode with the DMA to
send and receive data.

mcbsp_loopback_interrupts

McBSP-A example that uses the peripheral’s loop-back testmode to send data.
Interrupts are used in this example.

mcbsp_spi_loopback

McBSP-A example that configures the peripheral for SPI mode and uses the loop-
back testmode to send data.

sci_autobaud

Externally connect SCI-A to SCI-B and send data between the two peripherals.
Baud lock is performed using the autobaud feature of the SCI. This test is repeated
for different baud rates.

sci_echoback

SCI-A example that can be used to echoback to a terminal program such as
hyperterminal. A transceiver and a connection to a PC is required.

scia_loopback

SCI-A example that uses the peripheral’s loop-back test mode to send data.

scia_loopback_interrupts

SCI-A example that uses the peripheral’s loop-back test mode to send data. Both
interrupts and FIFOs are used in this example.

spi_loopback

SPI-A example that uses the peripherals loop-back test mode to send data.

spi_loopback_interrupts

SPI-A example that uses the peripherals loop-back test mode to send data. Both
interrupts and FIFOs are used in this example.

sw_prioritized_interrupts

The standard hardware prioritization of interrupts can be used for most applications.
This example shows a method for software to re-prioritize interrupts if required.

timed_led_blink

This example blinks GP1O32 (LED on the eZdsp) at a rate of 1 Hz using CPU Timer
0.

watchdog

lllustrates feeding the dog and re-directing the watchdog to an interrupt.

xintf_run_from

This example shows how to run from XINTF zone 7 and configure the XINTF
memory interface on the F28335 eZdsp.




{’." TexASs )
INSTRUMENTS V1.10 Quick Start Readme

4.5 Executing the Examples From Flash

Most of the DSP2833x/2823x examples execute from SARAM in “boot to SARAM” mode.
One example, DSP2833x_examples\Flash (or DSP2823x_examples\Flash), executes from
flash memory in “boot to flash” mode. This example is the PWM timer interrupt example with
the following changes made to execute out of flash:

1. Change the linker command file to link the code to flash.

Remove 28335_RAM_Ink.cmd from the project and add one of the flash based linker files
(ex: F28335.cmd, F28334.cmd, or F28332.cmd). These files are located in the
<base>DSP2833x_common\cma\ directory.

2. Add the DSP2833x_common\source\DSP2833x_CSMPasswords.asm to the project.

This file contains the passwords that will be programmed into the Code Security Module
(CSM) password locations. Leaving the passwords set to OxFFFF during development is
recommended as the device can easily be unlocked. For more information on the CSM
refer to the appropriate System Control and Interrupts Reference Guide.

3. Modify the source code to copy all functions that must be executed out of SARAM
from their load address in flash to their run address in SARAM.

In particular, the flash wait state initialization routine must be executed out of SARAM.
In the DSP2833x/2823x examples, functions that are to be executed from SARAM
have been assigned to the ramfuncs section by compiler CODE_SECTION #pragma
statements as shown in the example below.

/********************************************************************

* DSP2833x_common\source\DSP2833x_SysCtrl.c

********************************************************************/

#pragma CODE_SECTION(InitFlash, "ramfuncs");

The ramfuncs section is then assigned to a load address in flash and a run address in
SARAM by the memory linker command file as shown below:

/********************************************************************

* DSP2833x_common\include\F28335.cmd
********************************************************************/
SECTIONS
{
ramfuncs : LOAD = FLASHD,
RUN = RAMLO,
LOAD_START (_RamfuncsLoadStart),
LOAD_END (_RamfuncsLoadEnd) ,
RUN_START (_RamfuncsRunStart),
PAGE = 0

17



*53 TeExAs

V1.10 Quick Start Readme INSTRUMENTS

18

The linker will assign symbols as specified above to specific addresses as follows:

Address Symbol
Load start address RamfuncsLoadStart
Load end address RamfuncsLoadEnd
Run start address RamfuncsRunStart

These symbols can then be used to copy the functions from the Flash to SARAM using
the included example MemCopy routine or the C library standard memcopy() function.

To perform this copy from flash to SARAM using the included example MemCopy
function:

a. Add the file DSP2833x_common\source\DSP2833x_MemCopy.c to the project.

b. Add the following function prototype to the example source code. This is done for
you in the DSP2833x_Examples.h file.

/********************************************************************

* DSP2833x_common\include\DSP2833x_Examples.h
********************************************************************/

MemCopy (&RamfuncsLoadStart, &RamfuncsLoadEnd, &RamfuncsRunStart);

c. Add the following variable declaration to your source code to tell the compiler that
these variables exist. The linker command file will assign the address of each of
these variables as specified in the linker command file as shown in step 3. For the
DSP2833x/2823x example code this has is already done in DSP2833x_Examples.h.

/********************************************************************

* DSP2833x_common\include\DSP2833x_GlobalPrototypes.h

********************************************************************/

extern Uintl6 RamfuncsLoadStart;
extern Uintl6 RamfuncsLoadEnd;
extern Uintl6 RamfuncsRunStart;

d. Modify the code to call the example MemCopy function for each section that needs to
be copied from flash to SARAM.

/********************************************************************

* DSP2833x_examples\Flash source file
********************************************************************/

MemCopy (&RamfuncsLoadStart, &RamfuncsLoadEnd, &RamfuncsRunStart);




{’." TexASs )
INSTRUMENTS V1.10 Quick Start Readme

4. Modify the code to call the flash initialization routine:
This function will initialize the wait states for the flash and enable the Flash Pipeline mode.

/********************************************************************

* DSP2833x peripheral example .c file

********************************************************************/

InitFlash();

5. Set the required jumpers for “boot to Flash” mode.
The required jumper settings for each boot mode are shown in Table 7.

Table 7. 2833x/2823x Boot Mode Settings

GPI1087 GPI0O86 | GPIO85 | GP1084 Mode
XA15 XA14 XA13 XA12

PU PU PU PU

1 1 1 1 Boot to flash 0x33FFF6

1 1 1 0 Call SCI-A boot loader

1 1 0 1 Call SPI-A boot loader

1 1 0 0 Call 12C boot loader

1 0 1 1 Call eCAN-A boot loader

1 0 1 0 Call McBSP-A boot loader

1 0 0 1 Boot to XINTF x16 0x100000
1 0 0 0 Boot to XINTF x32 0x100000
0 1 1 1 Boot to OTP 0x380400

0 1 1 0 Call parallel GPIO boot loader
0 1 0 1 Call parallel XINTF boot loader
0 1 0 0 Boot to MO SARAM 0x000000
0 0 1 1 Branch to check boot mode
0 0 1 0 Boot to flash, bypass ADC cal
0 0 0 1 Boot to SARAM, bypass ADC cal
0 0 0 0 Boot to SCI-A, bypass ADC cal

Refer to the documentation for your hardware platform for information on configuring the
boot mode selection pins.

For more information on the ‘2833x/°2823x boot modes refer to the appropriate Boot
ROM Reference Guide.

6. Program the device with the built code.

This can be done using SDFlash available from Spectrum Digital’s website
(www.spectrumdigital.com). In addition the C2000 on-chip Flash programmer plug-in
for Code Composer Studio.

These tools will be updated to support new devices as they become available. Please
check for updates.

19



*53 TeExAs

V1.10 Quick Start Readme INSTRUMENTS

7. To debug, load the project in CCS, select File->Load Symbols->Load Symbols Only.

It is useful to load only symbol information when working in a debugging environment
where the debugger cannot or need not load the object code, such as when the code is in
ROM or flash. This operation loads the symbol information from the specified file.

4.6 Converting Floating-Point Compiled Examples to Fixed-Point and Vice Versa

20

1.

This section applies to ‘2833x devices only.

Because the 2833x is a floating-point device, all of the DSP2833x examples (unless
otherwise denoted in the example description) are configured for floating-point. In some
cases, it may be desirable to compile the code for fixed-point instead of floating-point. For
instance, because Code Composer Studio V3.1 and prior versions of CCS only support fixed-

point compiled projects, if the example project needs to be compiled and run on one of these
CCS versions, it must be converted to fixed-point first.

To convert the examples so they compile for fixed-point, certain steps must be taken. The
following steps are demonstrated on the example in DSP2833x_examples\fpu. The directory
includes two projects with identical C-code— one compiled using fixed-point instructions and
the other compiled using floating-point instructions.

Configure the compiler build options for fixed-point instead of floating-point.

a. Go to Project->Build Options.

b. Inthe Compiler tab window, click on the “Advanced” category and select “None”
from the “Floating point support: ” pull-down menu OR remove:
--float_support=fpu32 from the textbox at the top of the window.

L Ll W prtipnefor Example S 2B 3 dx bl Peoiware . pta(Debig] ,_J L’a

General Compiler | Linker | DspBiosBulder | Link Ordee |

e T2\ e 2AND S P2EA e INVD S P2333%_erampleshipuhDebiig”
i % ADSP2R3R_beadershinclude’ 4.\ \DSP2333s_commanhinchide”
A" DEBLIG™ ' LARGE_MOGEL" el -k w260

Cateqony: Adwanced
Basic RTS Madiicatians: [Defns Mo RTS Func: =]

Advariced |

nced |
Feedback fukolrine Thieshold (o |

Filzz 1 ] L

Aaserils [ Aliazed Vanables [-mal

Pasai [~ Momnal Dptiization wilh Debug ()
Praprocasear T

Dinpricslics [ Mo DF Load Optmizations (-md)

[ Optimize for Speed [-mi]
[ Awycid APT Instnuckion [-mi]
[ Lange Mamory Madsal [-ml]
[v Urified Mesman Moded (-mt)
[ Ernceade UOUT [

Pioeline Piatect Welatles [ |
Floating Poirt Support: |N.:n¢ d




‘-’ TEXAS ,
INSTRUMENTS V1.10 Quick Start Readme

2. Use the fixed-point version of the rts2800.lib library instead of the floating-point

version.
a. Click on the “Linker” tab at the tOp of : g 0 piio s for Bxample L85 xR sofiwarne. pii; I|.--.-iJ'I'f._.IL'JEﬂ:
the window. General | Compiler Linker | DopBiosBuider | Link Dider |

b. Click on the “Libraries” category and | S St et a oD

in the “Incl. Libraries” textbox 4" ADEPEE_header tinchda” [e2G00_ml BB

replace the floating-point version of e

the rts2800 I|brary Ba:u: i [v Exhaustively Read Libanes |-x]
(rts2800_fpu32.1ib) with the fixed- ivacert || Sumch Path (i} | \DSPZE33¢ headersvchude
point large memory version: I, Libraries (4} [ne2800_nl ib

rts2800_ml.lib .

3. Replace any floating-point compiled libraries included in the project with their fixed-
point equivalents.

If your project is compiled for floating-point (fpu32 option), then any libraries included
by your project must also be compiled for floating-point. Likewise, if your project is
compiled for fixed-point, the included libraries must also be compiled for fixed-point.

a. Inthe Project View window, click on the plus sign next to the “Libraries” folder to
view the libraries.

b. Right click on the floating-point compiled library and select “Remove from Project”.
c. Then right-click on the “Libraries” folder and select “Add Files to Project...”

d. Inthe DSP2833x_commonllib directory or in the directory where the fixed-point
compiled version of your library is located, select the fixed-point version of the
library to add it to your project.

After these 3 steps are performed, the floating-point example project has been converted to
fixed-point and can be re-compiled and built for fixed-point. To convert a fixed-point example
back into floating-point, the following steps must be taken:

1. Configure the compiler build options for [zl Ui fur 2 mui sk kii 7o e e A edl

floating-point instead of fixed-point. General  Compier | Linker | DepBiosBuider | Link Didar |

a. Go to Project->Build Options. 45/ e\ 2B\ DS 28331 DDV D SP2E33:_enarplesthipmm_slo\Debug [
" 4" N ADSPEER_headesshinchude” 70 ADSFZEIE_commoninchids”
. , . 4" DEBUG" o LARGE_MODEL" -l ot 23 BT e [eer] -
b. Inthe Compiler tab window, click on |
the “Advanced” category and select Cateory: Adbvanced —
ufpu32n from the “Floatlng pOInt .:E'.'EE,:;;:.__n RTS Maodiicatiors: ||E|E|£31_EE:|'EELHE$ LI
support: ” pull-down menu OR add: EeRE putoene | lumsio: ok [
-v28 ——-float_support=£fpu32 ety [ iz Variabies [ma)
to the textbox at the top of the e i | Bl e St

[~ MaDP Load Optimizslions [md)

™ Dplimize for Spesad [mf)

[T duard RFT Insteuction [-mi)

b Lange Memary Model [

R Unified Memory Model fmi]

[T Encode UOUT [mu)

Fipsire Frotect Volatles (el [

Floating Font Suppost: fpu32 =

window (The —v28 option may Diagnosties
already be in the textbox).




) *5‘ TEXAS
V1.10 Quick Start Readme INSTRUMENTS

2. Use the floating-point version of the rts2800.lib library instead of the fixed-point

version. ; —
Build Options for ExempleazBIBkERULTardware pilDe e | 2 || X |
a. Click on the “Linker” tab at the top

. Genetd | Compiler  Linkes | DepBiosBildes | Link Drder
of the window. ] e - |

g+ grode_start " \DebughExample_2833FPU_hardwaremap”
o ADebughExample_2B33<FPU_hordwane out” -stack 0x200 w -

b. Click on the “Libraries” category %\ \DSP2EI3:_headerzinchade” +41:2800_tpu32 b
and in the “Incl. Libraries” textbox,
replace the fixed-point version of Eelraid b s _
the rts2800 |Ib|’al’y %;Eﬂ W Exheustvely Aead Litatiss [-<]

Advancad | Search Path [} | MADSPEE_headesshinchide
Iroel Libeaiies [-0: 12300 fpuz2 ib

(rts2800_ml.lib or
rts2800.1ib) with the floating-
point version: rts2800_fpu32.1lib .

3. Replace any fixed-point compiled libraries included in the project with their floating-
point equivalents.

a. Inthe Project View window, click on the plus sign next to the “Libraries” folder to
view the libraries.

b. Right click on the floating-point compiled version of the library and select “Remove
from Project”.

c. Then right-click on the “Libraries” folder and select “Add Files to Project...”

d. Inthe DSP2833x_commonllib directory or in the directory where the floating-point
compiled version of your library is located, select the fixed-point version of the
library to add it to your project.

After these 3 steps are performed, the fixed-point example project has been converted to
floating-point and can be re-compiled and built for floating-point.

22



{’." TexASs )
INSTRUMENTS V1.10 Quick Start Readme

5 Steps for Incorporating the Header Files and Sample Code

Follow these steps to incorporate the peripheral header files and sample code into your own
projects. If you already have a project that uses the DSP280x or DSP281x header files then
also refer to Section 7 for migration tips.

5.1 Before you begin

Before you include the header files and any sample code into your own project, it is
recommended that you perform the following:

1. Load and step through an example project.

Load and step through an example project to get familiar with the header files and
sample code. This is described in Section 4.

2. Create a copy of the source files you want to use.

DSP2833x_headers: code required to incorporate the header files into your project
DSP2833x_common: shared source code much of which is used in the example
projects.

DSP2823x_examples: ‘2823x fixed-point compiled example projects that use the header
files and shared code.

DSP2833x_examples: ‘2833x floating-point compiled example projects that use the
header files and shared code.

5.2 Including the DSP2833x Peripheral Header Files

Including the DSP2833x header files in your project will allow you to use the bit-field structure
approach in your code to access the peripherals on the DSP. To incorporate the header files
in a new or existing project, perform the following steps:

1. #include “DSP2833x_Device.h” in your source files.

This include file will in-turn include all of the peripheral specific header files and required
definitions to use the bit-field structure approach to access the peripherals.

/********************************************************************

* User’s source file
********************************************************************/

#include “DSP2833x_Device.h”

23



V'1.10 Quick Start Readme

*53 TeExAs

2. Edit DSP2833x_Device.h and select the target you are building for:
In the below example, the file is configured to build for the '28335/°28235 device.

INSTRUMENTS

/********************************************************************

* DSP2833x_headers\include\DSP2833x_Device.h

********************************************************************/

#define TARGET 1

#define DSP28_28335 TARGET // Selects '28335/'28235
#define DSP28_28334 0 // Selects '28334/'28234
#define DSP28_28332 0 // Selects '28332/'28232.. etc

By default, the ‘28335/°'28235 device is selected.

3. Add the source file DSP2833x_GlobalVariableDefs.c to the project.
This file is found in the DSP2833x_headers\source\ directory and includes:
— Declarations for the variables that are used to access the peripheral registers.

— Data section #pragma assignments that are used by the linker to place the variables

in the proper locations in memory.
4. Add the appropriate DSP2833x header linker command file to the project.

As described in Section 3, when using the DSP2833x header file approach, the data
sections of the peripheral register structures are assigned to the memory locations of
the peripheral registers by the linker.

To perform this memory allocation in your project, one of the following linker command
files located in DSP2833x_headers\cmd\ must be included in your project:

—  For non-DSP/BIOST projects: DSP2833x_Headers_nonBIOS.cmd
— For DSP/BIOS projects: DSP2833x_Headers_BIOS.cmd
The method for adding the header linker file to the project depends on the version of
Code Composer Studio being used. .23
Code Composer Studio V2.2 and later: = Example_2833xWatchdog.pjt {Debug)
. [L] Dependent Projects

As of CCS 2.2, more then one linker &R Documents
command file can be included in a project. (£] DSPBIOS Config
Add the appropriate header linker command (3 Generated Files
file (BIOS or nonBIOS) directly to the project. + [ Include

[L7 Libraries

+ D Source

. . 28335_RAM_Ink.cmd
Code Composer Studio prior to V2.2 DSP2833x Headers, norBIOS.cmd
Prior to CCS 2.2, each project contained only

one main linker command file. This file can, however, call additional .cmd files as
needed. To include the required memory allocations for the DSP2833x header files,

perform the following two steps:

" DSP/BIOS is a trademark of Texas Instruments

24



{’." TexASs )
INSTRUMENTS V1.10 Quick Start Readme

1) Update the project’s main linker command (.cmd) file to call one of the supplied
DSP2833x peripheral structure linker command files using the -l option.

/********************************************************************

* User’s linker .cmd file
********************************************************************/

/* Use this include file only for non-BIOS applications */
-1 DSP2833x_Headers_nonBIOS.cmd

/* Use this include file only for BIOS applications */

/* -1 DSP2833x_Headers_BIOS.cmd */

2) Add the directory path to the DSP2833x peripheral linker .cmd file to your
project.

a. Open the menu: Project->Build Options
b. Select the Linker tab and then Select Basic.

c. Inthe Library Search Path, add the directory path to the location of the
DSP2833x_headers\cmd directory on your system.

5. Add the directory path to the DSP2833x header files to your project.

To specify the directory where

. iyl oS DRty i E R XA e L D E sy L e X ||
the header files are located: Gt OptionsioriBxamplesBSxatchdoe pItIDEb el [ X
a. Open the menu: General  Campiler l Linker ] Link Drder]
i _ H i -g -q -pdr -az

Project->Build Options ACNlides\c28\DSP2833\v100\DSP2833_examplestwiatchdoghDebug”
b. Select the Compi/er tab 2 Crakidog e 280D SP283 30w 10D SP 2833 eramplestimatchdogtDebug
c. Select pre-processor. Cateqgan: Preproceszor

Basic Include S h Path [-]: |..5% ADSP2833x_headershinclude;..\

In the Include Search Path, Advanced ne E_ Il Lot L

add the directory path to F;T:Sdba,:k Pre-Diefine Symbol [-d: |_DEBUG.LARGE_MODEL

the location of i Undefine Symbol [-u]: |

DSP2833x_headerslinclud 7 |Farser Freprocessing: |Mone -

€ on your system. Diagnostics [ Continue with Compilation [-ppa)

6. Additional suggested build
options:

The following are additional compiler and linker options. The options can all be set via
the Project->Build Options menu.

— Compiler Tab:
a -ml Select Advanced and check —ml

Build for large memory model. This setting allows data sections to reside
anywhere within the 4M-memory reach of the 28x devices.

a -pdr Select Diagnostics and check —pdr

25



*53 TeExAs

V1.10 Quick Start Readme INSTRUMENTS

26

Issue non-serious warnings. The compiler uses a warning to indicate code that is
valid but questionable. In many cases, these warnings issued by enabling -pdr
can alert you to code that may cause problems later on.

— Linker Tab:

Q

-w Select Advanced and check —w

Warn about output sections. This option will alert you if any unassigned memory
sections exist in your code. By default the linker will attempt to place any
unassigned code or data section to an available memory location without alerting
the user. This can cause problems, however, when the section is placed in an
unexpected location.

-e Select Basic and enter Code Entry Point —e

Defines a global symbol that specifies the primary entry point for the output
module. For the DSP2833x/DSP2823x examples, this is the symbol “code_start”.
This symbol is defined in the
DSP2833x_common\source\DSP2833x_CodeStartBranch.asm file. When you
load the code in Code Composer Studio, the debugger will set the PC to the
address of this symbol. If you do not define a entry point using the —e option,
then the linker will use _c_int00 by default.



{’." TexASs )
INSTRUMENTS V1.10 Quick Start Readme

5.3 Including Common Example Code

Including the common source code in your project will allow you to leverage code that is

already written for the device. To incorporate the shared source code into a new or existing
project, perform the following steps:

1. #include “DSP2833x_Examples.h” in your source files.

This include file will include common definitions and declarations used by the example
code.

/********************************************************************

* User’s source file
********************************************************************/

#include “DSP2833x_Examples.h”

2. Add the directory path to the example include files to your project.
To specify the directory where

the header files are located: Bld|Optionsifor Exampless 833xWatchdogpitDenuele 2 [X |
a. Open the menu: Gereral  Compiler l Linker | Link Order
Project->Build Options eE R
. UG tideg e 28D S P28 301 00N DS P28 33w _examplazwatchdoghDebug”’ &3
b. Select the Compiler tab £5"C:Mides\e2EAD SP283 30w 1 DD SP2E334_examplesiwatchdogiDebug'
Select pre-processor. Cateqgan: Preprocessar
In the Include Search Path, B asic ; Include Search Path [+ .. \DSP2833x_headerstinclude;..
. Ad
add the directory path to the Feodback  PreDefine Symbol (d | DEBUG LARGE_MODEL
location of ] .Ellsessembl_l,l Undefine Symbol [-u]: |
DSP2833x_common/include . o
b Parser Freprocessing: | Mane ﬂ
on your system.  Conti ith Compilation [ppal
. i 1 QRLIALE W ampiation |-ppa
Use a semicolon between LA pISEn PR

directories.

For example the directory path for the included projects is:
..L.IDSP2833x_headersl\include;..\..\DSP2833x_commonl\include

3. Add a linker command file to your project.

The following memory linker .cmd files are provided as examples in the
DSP2833x_common\cmd directory. For getting started the basic
28335 _eZdsp RAM_Ink.cmd file is suggested and used by most of the examples.

27



) *5‘ TEXAS
V1.10 Quick Start Readme INSTRUMENTS

Table 8. Included Main Linker Command Files

Memory Linker Command Location Description
File Examples
28335 RAM_Ink.cmd DSP2833x_common\cmd | 28335/28235 memory linker command

file. Includes all of the internal SARAM
blocks on a 28335/28235 device. “RAM”
linker files do not include flash or OTP

blocks.

28334 _RAM_Ink.cmd DSP2833x_common\cmd | 28334/28234 SARAM memory linker
command file.

28332_RAM_Ink.cmd DSP2833x_common\cmd | 28332/28232 SARAM memory linker
command file.

F28335.cmd DSP2833x_common\cmd | F28335/F28235 memory linker command

file. Includes all Flash, OTP and CSM
password protected memory locations.

F28334.cmd DSP2833x_common\cmd | F28334/F28234 memory linker command
file.

F28332.cmd DSP2833x_common\cmd | F28332/F28232 memory linker command
file.

4. Set the CPU Frequency

In the DSP2833x_commonlinclude\DSP2833x_Examples.h file specify the proper CPU
frequency. Some examples are included in the file.

/********************************************************************

* DSP2833x_common\include\DSP2833x_Examples.h
‘k*‘k***‘k*‘k‘k‘k***‘k*‘k*‘k*‘k***‘k*‘k*‘k***‘k*‘k*‘k*‘k**‘k‘k*‘k***********************/

#define CPU_RATE 6.667L // for a 150MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE 7.143L // for a 140MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE 8.333L // for a 120MHz CPU clock speed (SYSCLKOUT)

5. Add desired common source files to the project.
The common source files are found in the DSP2833x_common\source\ directory.
6. Include .c files for the PIE.

Since all catalog ‘2833x/'2823x applications make use of the PIE interrupt block, you will
want to include the PIE support .c files to help with initializing the PIE. The shell ISR
functions can be used directly or you can re-map your own function into the PIE vector
table provided. A list of these files can be found in section 8.2.1.

28



{’." TexASs )
INSTRUMENTS V1.10 Quick Start Readme

6 Troubleshooting Tips & Frequently Asked Questions

In the examples, what do “EALLOW;” and “EDIS;” do?

EALLOW,; is a macro defined in DSP2833x_Device.h for the assembly instruction
EALLOW and likewise EDIS is a macro for the EDIS instruction. That is EALLOW; is the
same as embedding the assembly instruction asm(* EALLOW”);

Several control registers on the 28x devices are protected from spurious CPU writes by
the EALLOW protection mechanism. The EALLOW bit in status register 1 indicates if the
protection is enabled or disabled. While protected, all CPU writes to the register are
ignored and only CPU reads, JTAG reads and JTAG writes are allowed. [f this bit has
been set by execution of the EALLOW instruction, then the CPU is allowed to freely write
to the protected registers. After modifying the registers, they can once again be
protected by executing the EDIS assembly instruction to clear the EALLOW bit.

For a complete list of protected registers, refer to TMS320x2833x System Control and
Interrupts Reference Guide (SPRU712).

Peripheral registers read back 0x0000 and/or cannot be written to.

There are a few things to check:

e Peripheral registers cannot be modified or unless the clock to the specific peripheral
is enabled. The function InitPeripheralClocks() in the DSP2833x_common\source
directory shows an example of enabling the peripheral clocks.

e Some peripherals are not present on all 2833x family derivatives. Refer to the
device datasheet for information on which peripherals are available.

e The EALLOW bit protects some registers from spurious writes by the CPU. If your
program seems unable to write to a register, then check to see if it is EALLOW
protected. If it is, then enable access using the EALLOW assembly instruction.
TMS320x2833x System Control and Interrupts Reference Guide (SPRUFBO) for a
complete list of EALLOW protected registers.

Memory block LO, L1 read back all 0x0000.

In this case most likely the code security module is locked and thus the protected
memory locations are reading back all 0x0000. Refer to the for information on the code
security module.

Code cannot write to LO or L1 memory blocks.

In this case most likely the code security module is locked and thus the protected
memory locations are reading back all 0x0000. Code that is executing from outside of
the protected cannot read or write to protected memory while the CSM is locked. Refer
to the TMS320x2833x Control and Interrupts Reference Guide (SPRUFBO) for
information on the code security module

29



*53 TeExAs

V1.10 Quick Start Readme INSTRUMENTS

30

A peripheral register reads back ok, but cannot be written to.

The EALLOW bit protects some registers from spurious writes by the CPU. If your
program seems unable to write to a register, then check to see if it is EALLOW protected.
If it is, then enable access using the EALLOW assembly instruction. TMS320x2833x
System Control and Interrupts Reference Guide (SPRUFBO) for a complete list of
EALLOW protected registers.

| re-built one of the projects to run from Flash and now it doesn’t work. What could
be wrong?

Make sure all initialized sections have been moved to flash such as .econst and .switch.

If you are using SDFlash, make sure that all initialized sections, including .econst, are
allocated to page 0 in the linker command file (.cmd). SDFlash will only program
sections in the .out file that are allocated to page O.

Why do the examples populate the PIE vector table and then re-assign some of the
function pointers to other ISRs?

The examples share a common default ISR file. This file is used to populate the PIE
vector table with pointers to default interrupt service routines. Any ISR used within the
example is then remapped to a function within the same source file. This is done for the
following reasons:

— The entire PIE vector table is enabled, even if the ISR is not used within the example.
This can be very useful for debug purposes.

— The default ISR file is left un-modified for use with other examples or your own
project as you see fit.

— ltillustrates how the PIE table can be updated at a later time.

When | build the examples, the linker outputs the following: warning: entry point
other than _c_int00 specified. What does this mean?

This warning is given when a symbol other then _c_int00 is defined as the code entry
point of the project. For these examples, the symbol code_start is the first code that is
executed after exiting the boot ROM code and thus is defined as the entry point via the —
e linker option. This symbol is defined in the DSP2833x_CodeStartBranch.asm file. The
entry point symbol is used by the debugger and by the hex utility. When you load the
code, CCS will set the PC to the entry point symbol. By default, this is the _c_int00
symbol which marks the start of the C initialization routine. For the DSP2833x examples,
the code_start symbol is used instead. Refer to the source code for more information.

When | build many of the examples, the compiler outputs the following: remark:
controlling expression is constant. What does this mean?

Some of the examples run forever until the user stops execution by using a while(1) {}
loop The remark refers to the while loop using a constant and thus the loop will never be
exited.

When | build some of the examples, the compiler outputs the following: warning:
statement is unreachable. What does this mean?



{’." TexASs )
INSTRUMENTS V1.10 Quick Start Readme

Some of the examples run forever until the user stops execution by using a while(1) {}
loop. If there is code after this while(1) loop then it will never be reached.

¢ | changed the build configuration of one of the projects from “Debug” to “Release”
and now the project will not build. What could be wrong?

When you switch to a new build configuration (Project->Configurations) the compiler and
linker options changed for the project. The user must enter other options such as include
search path and the library search path. Open the build options menu (Project->Build
Options) and enter the following information:

— Compiler Tab, Preprocessor: Include search path

— Linker Tab, Basic: Library search path

— Linker Tab, Basic: Include libraries (ie rts2800_ml.lib)
Refer to section 0 for more details.

¢ In the flash example | loaded the symbols and ran to main. | then set a breakpoint
but the breakpoint is never hit. What could be wrong?

In the Flash example, the InitFlash function and several of the ISR functions are copied
out of flash into SARAM. When you set a breakpoint in one of these functions, Code
Composer will insert an ESTOPO instruction into the SARAM location. When the
ESTOPO instruction is hit, program execution is halted. CCS will then remove the
ESTOPO and replace it with the original opcode. In the case of the flash program, when
one of these functions is copied from Flash into SARAM, the ESTOPO instruction is
overwritten code. This is why the breakpoint is never hit. To avoid this, set the
breakpoint after the SARAM functions have been copied to SARAM.

e The eCAN control registers require 32-bit write accesses.

The compiler will instead make a 16-bit write accesses if it can in order to improve
codesize and/or performance. This can result in unpredictable results.

One method to avoid this is to create a duplicate copy of the eCAN control registers in
RAM. Use this copy as a shadow register. First copy the contents of the e CAN register
you want to modify into the shadow register. Make the changes to the shadow register
and then write the data back as a 32-bit value. This method is shown in the
DSP2833x_examples\ ecan_back2back example project.

6.1 Effects of read-modify-write instructions.

When writing any code, whether it be C or assembly, keep in mind the effects of read-modify-
write instructions.

The 28x DSP will write to registers or memory locations 16 or 32-bits at a time. Any
instruction that seems to write to a single bit is actually reading the register, modifying the
single bit, and then writing back the results. This is referred to as a read-modify-write
instruction. For most registers this operation does not pose a problem. A notable exception
is:

31



*53 TeExAs

V1.10 Quick Start Readme INSTRUMENTS

6.1.1 Registers with multiple flag bits in which writing a 1 clears that flag.

For example, consider the PIEACK register. Bits within this register are cleared when writing
a 1 to that bit. If more then one bit is set, performing a read-modify-write on the register may
clear more bits then intended.

The below solution is incorrect. It will write a 1 to any bit set and thus clear all of them:

/********************************************************************

* User’s source file
********************************************************************/

PieCtrl.PIEACK.bit.Ackl = 1; // INCORRECT! May clear more bits.

The correct solution is to write a mask value to the register in which only the intended bit will
have a 1 written to it:

/********************************************************************

* User'’s source file
********************************************************************/

#define PIEACK_GROUP1 0x0001

PieCtrl.PIEACK.all = PIEACK_GROUP1; // CORRECT!

6.1.2 Registers with Volatile Bits.

32

Some registers have volatile bits that can be set by external hardware.

Consider the PIEIFRx registers. An atomic read-modify-write instruction will read the 16-bit
register, modify the value and then write it back. During the modify portion of the operation a
bit in the PIEIFRx register could change due to an external hardware event and thus the
value may get corrupted during the write.

The rule for registers of this nature is to never modify them during runtime. Let the CPU take
the interrupt and clear the IFR flag.



{’." TexASs )
INSTRUMENTS V1.10 Quick Start Readme

7 Migration Tips for moving from the TMS320x280x or TMS320x281x
header files to the TMS320x2833x/TMS320x2823x header files

This section includes suggestions for moving a project from the 280x or 281x header files
to the 2833x header files.

1. Create a copy of your project to work with or back-up your current project.
2. Open the project (.pjt) file in a text editor

Replace DSP280x or DSP281x with DSP2833x/DSP2823x so that the appropriate
source files are used. Check the path names to make sure they point to the appropriate
header file and source code directories.

3. Load the project into Code Composer Studio

Use the Edit-> find in files dialog to find instances of DSP280x_Device.h and
DSP280x_Example.h for 280x header files, or DSP281x_Device.h and
DSP281x_Example.h for 281x header files. Replace these with DSP2833x_Device.h
and DSP2833x_Example.h respectively.

4. Make sure you are using the correct linker command files (.cmd) appropriate for
your device and for the DSP2833x header files.

You will have one file for the memory definitions and one file for the header file structure
definitions. Using a 280x or 281x memory file can cause issues since the HO memory
block has been split, renamed, and/or moved on the 2833x/2823x devices.

5. Build the project.

The compiler will highlight areas that have changed. If migrating from the TMS320x280x
header files, code should be mostly compatible after all instances of DSP280x are
replaced with DSP2833x in all relevant files, and the above steps are taken. Additionally,
several bits have been removed and/or replaced. See Table 9.

Table 9. Summary of Register and Bit-Name Changes from DSP280x V1.41 to
DSP2833x V1.01

Bit Name
Peripheral Register Old New Comment

SysCtriRegs

XCLK Register removed because XCLKOUT is
controlled by XINTF now.

PLLSTS CLKINDIV(bit 1) | DIVSEL (bits 8,7) DIVSEL allows more values by which
CLKIN can be divided.

33



*53 TeExAs

V1.10 Quick Start Readme INSTRUMENTS

34

If migrating from the TMS320x281x header files, most of these changes will fall into one
of the following categories:

Bit-name or register name corrections to align with the peripheral user guides. See
Table 10 for a listing of these changes.

Code that was written for the 281x event manager (EV) will need to be re-written for
the 2833x/2823x ePWM, eCAP and eQEP peripherals.

Code for the 281x McBSP will need to be modified for the 2833x/2823x version of the
peripheral (FIFO replaced with DMA).

Code for the 281x XINTF will need to be modified for the 2833x/2823x version of the
peripheral in the following ways:

The .cmd linker file will need to be updated because zone memory locations have
changed and the 2833x/2823x only has Zones 0, 6, and 7.

Because both the boot ROM and the XINTF zones are always memory-mapped on
the 2833, there is no longer any need for the MPNMC bit in the XINTCNF2
registers. Therefore, the MPNMC bit on the 281x is now reserved on the
2833x/2823x. See Table 10.

On the 281x, the clock to the XINTF was always enabled. On the 2833x/2823x, code
must be added which will enable/disable the clock to the XINTF module in the
PCLKCRS system control register.

Because the XINTF pins on the 2833x/2823x are now MUX’d with GPIO pins at
reset, code migrating from the 281x to the 2833x/2823x will need to modify the
XINTF initialization to enable the GPIO pins for XINTF mode.

There is now an XRESET register on the 2833x/2823x which was not available on
the 281x.



‘v’f TexASs
INSTRUMENTS

V'1.10 Quick Start Readme

Table 10. Summary of Register and Bit-Name Changes from DSP281x V1.00 to
DSP2833x V1.01

Bit Name
Peripheral Register Old New Comment
AdcRegs
ADCTRL2 EVB_SOC EPWM_SOCB_ SOC is now performed by ePWM
SEQ2 SEQ2
EVA_SOC_ EPWM_SOCA_ SOC is now performed by ePWM
SEQ1 SEQ1
EVB_SOC_ EPWM_SOCB_ SOC is now performed by ePWM
SEQ SEQ
DevEmuRegs
DEVICEID PARTID Split into two registers, PARTID and REVID
REVID
EcanaRegs
CANMDL BYTE1 BYTES Order of bytes was incorrect
BYTES3 BYTE1
BYTE4 BYTEO
CANMDH BYTES BYTE7 Order of bytes was incorrect
BYTE7 BYTES
BYTES BYTE4
GpioMuxRegs
The GPIO peripheral has been redesigned
from the 281x. All of the registers have
moved from 16-bit to 32-bits. The
GpioMuxRegs are now the GpioCtrlRegs
and the bit definitions have all changed.
Please refer to TMS320x2833x Control and
Interrupts Reference Guide for more
information on the GPIO peripheral.
PieCtrIRegs
PIECTRL PIECRTL PIECTRL Typo
SciaRegs, ScibRegs
SCIFFTX TXFFILIL TXFFIL Typo
TXINTCLR TXFFINTCLR Alignment with user’s guide.
SCIFFRX RXFIFST RXFFST Typo — Also corrected in user’s guide
McbspaRegs
MFFTX The McBSP FIFO on the 281x has been
removed and replaced by the DMA.
Therefore these FIFO registers do not exist
MFFRX on the 2833x. Please refer to the
TMS320x2833x McBSP Reference Guide
MFECT for more information on the McBSP
peripheral.
XintfRegs
XINTCNF2 | MPNMC Rsvd2 The MPNMC bit does not exist on the
2833x
XTIMING1 There is no Zone 1 on the 2833x
XTIMING2 There is no Zone 2 on the 2833x

35




V'1.10 Quick Start Readme

*5‘ TeExAS
INSTRUMENTS

8 Packet Contents:

This section lists all of the files included in the release.

8.1

Header File Support — DSP2833x_headers

The DSP2833x header files are located in the <base>\DSP2833x_headers\ directory.

8.1.1 DSP2833x Header Files — Main Files

The following files must be added to any project that uses the DSP2833x header files. Refer
to section 5.2 for information on incorporating the header files into a new or existing project.

Table 11.

DSP2833x Header Files — Main Files

File

Location

Description

DSP2833x_Device.h

DSP2833x_headers\include

Main include file. Include this one file in any
of your .c source files. This file in-turn
includes all of the peripheral specific .h files
listed below. In addition the file includes
typedef statements and commonly used
mask values. Refer to section 5.2.

DSP2833x_GlobalVariableDefs.c

DSP2833x_headers\source

Defines the variables that are used to access
the peripheral structures and data section
#pragma assignment statements. This file
must be included in any project that uses the
header files. Refer to section 5.2.

DSP2833x_Headers_BIOS.cmd

DSP2833x_headers\cmd

Linker .cmd file to assign the header file
variables in a BIOS project. This file must
be included in any BIOS project that uses
the header files. Refer to section 5.2.

DSP2833x_Headers_nonBIOS.cmd

DSP2833x_headers\cmd

Linker .cmd file to assign the header file
variables in a non-BIOS project. This file
must be included in any non-BIOS project
that uses the header files. Refer to section
5.2.

36




{’." TEXAS

INSTRUMENTS V1.10 Quick Start Readme

8.1.2 DSP2833x Header Files — Peripheral Bit-Field and Register Structure Definition

Files

The following files define the bit-fields and register structures for each of the peripherals on
the 2833x devices. These files are automatically included in the project by including
DSP2833x_Device.h. Refer to section 4.2 for more information on incorporating the header
files into a new or existing project.

Table 12.

DSP2833x Header File Bit-Field & Register Structure Definition Files

File

Location

Description

DSP2833x_Adc.h

DSP2833x_headers\include

ADC register structure and bit-field definitions.

DSP2833x_CpuTimers.h

DSP2833x_headers\include

CPU-Timer register structure and bit-field
definitions.

DSP2833x_DevEmu.h

DSP2833x_headers\include

Emulation register definitions

DSP2833x_DMA.h

DSP2833x_headers\include

DMA register structures and bit-field definitions.

DSP2833x_ECan.h

DSP2833x_headers\include

eCAN register structures and bit-field definitions.

DSP2833x_ECap.h

DSP2833x_headers\include

eCAP register structures and bit-field definitions.

DSP2833x_EPwm.h

DSP2833x_headers\include

ePWM register structures and bit-field definitions.

DSP2833x_EQep.h

DSP2833x_headers\include

eQEP register structures and bit-field definitions.

DSP2833x_Gpio.h

DSP2833x_headers\include

General Purpose I/0 (GPIO) register structures
and bit-field definitions.

DSP2833x_I2c.h

DSP2833x_headers\include

12C register structure and bit-field definitions.

DSP2833x_Mcbsp.h

DSP2833x_headers\include

McBSP register structure and bit-field definitions.

DSP2833x_PieCirl.h

DSP2833x_headers\include

PIE control register structure and bit-field
definitions.

DSP2833x_PieVect.h

DSP2833x_headers\include

Structure definition for the entire PIE vector table.

DSP2833x_Sci.h

DSP2833x_headers\include

SCl register structure and bit-field definitions.

DSP2833x_Spi.h

DSP2833x_headers\include

SPI register structure and bit-field definitions.

DSP2833x_SysCirl.h

DSP2833x_headers\include

System register definitions. Includes Watchdog,
PLL, CSM, Flash/OTP, Clock registers.

DSP2833x_Xintf.h

DSP2833x_headers\include

XINTF register structure and bit-field definitions.

DSP2833x_Xintrupt.h

DSP2833x_headers\include

External interrupt register structure and bit-field
definitions.

37




V'1.10 Quick Start Readme

*5‘ TeExAS
INSTRUMENTS

8.1.3 Code Composer .gel Files

The following Code Composer Studio .gel files are included for use with the DSP2833x
Header File peripheral register structures.

Table 13.

DSP2833x Included GEL Files

File

Location

Description

DSP2833x_Peripheral.gel

DSP2833x_headers\gel

Provides GEL pull-down menus to load the DSP2833x data
structures into the watch window.

You may want to have CCS load this file automatically by
adding a
GEL_LoadGel(“<base>DSP2833x_headers\/ge\DSP2833x
_peripheral.gel”) function to the standard F28335.gel that
was included with CCS.

8.1.4 Variable Names and Data Sections

This section is a summary of the variable names and data sections allocated by the
DSP2833x_headers\source\DSP2833x_GlobalVariableDefs.c file. Note that all peripherals
may not be available on a particular 2833x device. Refer to the device datasheet for the
peripheral mix available on each 2833x family derivative.

Table 14. DSP2833x Variable Names and Data Sections

Peripheral Starting Address Structure Variable Name
ADC 0x007100 AdcRegs
ADC Mirrored Result Registers 0x000B00 AdcMirror
ADC Calibration Value Locations 0x380083 AdcCalVal
Code Security Module 0x000AEQ CsmRegs
Code Security Module Password 0x33FFF8- CsmPwl
Locations 0x33FFFF
CPU Timer 0 0x000C00 CpuTimerORegs
Device and Emulation Registers 0x000880 DevEmuRegs
DMA Registers 0x001000 DmaRegs
eCAN-A 0x006000 ECanaRegs
eCAN-A Mail Boxes 0x006100 ECanaMboxes
eCAN-A Local Acceptance Masks 0x006040 ECanalLAMRegs
eCAN-A Message Object Time Stamps 0x006080 ECanaMOTSRegs
eCAN-A Message Object Time-Out 0x0060C0 ECanaMOTORegs
eCAN-B 0x006200 ECanbRegs
eCAN-B Mail Boxes 0x006300 ECanbMboxes
eCAN-B Local Acceptance Masks 0x006240 ECanbLAMRegs
eCAN-B Message Object Time Stamps 0x006280 ECanbMOTSRegs
eCAN-B Message Object Time-Out 0x0062C0 ECanbMOTORegs
ePWMA1 0x006800 EPwm1Regs
ePWM2 0x006840 EPwm2Regs
ePWMS3 0x006880 EPwm3Regs

38




{’? TEXAS

INSTRUMENTS V1.10 Quick Start Readme
Peripheral Starting Address Structure Variable Name

ePWM4 0x0068C0 EPwm4Regs
ePWM5 0x006900 EPwm5Regs
ePWM6 0x006940 EPwm6Regs
eCAP1 0x006A00 ECap1Regs
eCAP2 0x006A20 ECap2Regs
eCAP3 0x006A40 ECap3Regs
eCAP4 0x006A60 ECap4Regs
eCAP5 0x006A80 ECap5Regs
eCAP6 0x006AA0 ECap6Regs
eQEP1 0x006B00 EQep1Regs
eQEP2 0x006B40 EQep2Regs
External Interrupt Registers 0x007070, XlntruptRegs
Flash & OTP Configuration Registers 0x000A80 FlashRegs
General Purpose I/O Data Registers 0x006fCO GpioDataRegs
General Purpose Control Registers 0x006F80 GpioCtrlRegs
General Purpose Interrupt Registers 0x006fE0 GpiolntRegs
12C 0x007900 12caRegs
McBSP-A 0x005000 McbspaRegs
McBSP-B 0x005040 McbspbRegs
PIE Control 0x000CEQ PieCtrIRegs
SCI-A 0x007050 SciaRegs
SCI-B 0x007750 ScibRegs
SCI-C 0x007770 ScicRegs
SPI-A 0x007040 SpiaRegs
XINTF 0x000B20 XintfRegs

39



V'1.10 Quick Start Readme

*5‘ TeExAS
INSTRUMENTS

8.2 Common Example Code — DSP2833x_common

8.2.1 Peripheral Interrupt Expansion (PIE) Block Support

In addition to the register definitions defined in DSP2833x_PieCtrl.h, this packet provides the
basic ISR structure for the PIE block. These files are:

Table 15.

Basic PIE Block Specific Support Files

File

Location

Description

DSP2833x_Defaultlsr.c | DSP2833x_common\source

Shell interrupt service routines (ISRs) for the entire PIE
vector table. You can choose to populate one of
functions or re-map your own ISR to the PIE vector
table. Note: This file is not used for DSP/BIOS
projects.

DSP2833x_Defaultlsr.h | DSP2833x_common\include

Function prototype statements for the ISRs in
DSP2833x_Defaultlsr.c. Note: This file is not used for
DSP/BIOS projects.

DSP2833x_PieVect.c

DSP2833x_common\source

Creates an instance of the PIE vector table structure
initialized with pointers to the ISR functions in
DSP2833x_Defaultlsr.c. This instance can be copied to
the PIE vector table in order to initialize it with the default
ISR locations.

In addition, the following files are included for software prioritization of interrupts. These files
are used in place of those above when additional software prioritization of the interrupts is
required. Refer to the example and documentation in
DSP2833x_examples\sw_prioritized_interrupts for more information.

Table 16. Software Prioritized Interrupt PIE Block Specific Support Files

File

Location

Description

DSP2833x_SW PrioritizedDefaultlsr.c

DSP2833x_common\source

Default shell interrupt service routines
(ISRs). These are shell ISRs for all of the
PIE interrupts. You can choose to
populate one of functions or re-map your
own interrupt service routine to the PIE
vector table. Note: This file is not used
for DSP/BIOS projects.

DSP2833x_SWPrioritizedlsrLevels.h

DSP2833x_common\include | Function prototype statements for the ISRs

in DSP2833x_Defaultlsr.c. Note: This file
is not used for DSP/BIOS projects.

DSP2833x_SWPrioritizedPieVect.c

DSP2833x_common\source

Creates an instance of the PIE vector table
structure initialized with pointers to the
default ISR functions that are included in
DSP2833x_Defaultlsr.c. This instance can
be copied to the PIE vector table in order
to initialize it with the default ISR locations.

40



{’." TexASs )
INSTRUMENTS V1.10 Quick Start Readme

8.2.2 Peripheral Specific Files

Several peripheral specific initialization routines and support functions are included in the
peripheral .c source files in the DSP2833x_common\src\ directory. These files include:

Table 17. Included Peripheral Specific Files

File Description
DSP2833x_GlobalPrototypes.h | Function prototypes for the peripheral specific functions included in these files.
DSP2833x_Adc.c ADC specific functions and macros.

DSP2833x_CpuTimers.c CPU-Timer specific functions and macros.
DSP2833x_DMA.c DMA specific functions and macros.
DSP2833x_Dma_defines.h #define macros that are used for the DMA examples.
DSP2833x_ECan.c Enhanced CAN specific functions and macros.
DSP2833x_ECap.c eCAP module specific functions and macros.
DSP2833x_EPwm.c ePWM module specific functions and macros.

DSP2833x_ EPwm_defines.h #define macros that are used for the ePWM examples
DSP2833x_EQep.c eQEP module specific functions and macros.
DSP2833x_Gpio.c General-purpose 10 (GPIO) specific functions and macros.
DSP2833x_l2C.c 12C specific functions and macros.
DSP2833x_l2c_defines.h #define macros that are used for the 12C examples
DSP2833x_Mcbsp.c McBSP specific functions and macros.
DSP2833x_PieCtrl.c PIE control specific functions and macros.
DSP2833x_Sci.c SCI specific functions and macros.

DSP2833x_Spi.c SPI specific functions and macros.

DSP2833x_SysCitrl.c System control (watchdog, clock, PLL etc) specific functions and macros.
DSP2833x_Xintf.c XINTF specific functions and macros.

Note: The specific routines are under development and may not all be available as of this release. They will be
added and distributed as more examples are developed.

41



) *5‘ TEXAS
V1.10 Quick Start Readme INSTRUMENTS

8.2.3 Utility Function Source Files

Table 18. Included Utility Function Source Files

File Description

DSP2833x_ADC_cal.asm Includes the ADC_cal function, which is pre-programmed into reserved TI
OTP. This function, which copies device-specific calibration data into the
ADCREFSEL and ADCOFFTRIM registers, is normally called in the boot
ROM. When debugging though, if the boot ROM is bypassed, it is necessary
to call this function after enabling the clocks to the ADC in order to use the
ADC module.

DSP2833x_CodeStartBranch.asm | Branch to the start of code execution. This is used to re-direct code
execution when booting to Flash, OTP or MO SARAM memory. An option to
disable the watchdog before the C init routine is included.

DSP2833x_DBGIER.asm Assembly function to manipulate the DEBIER register from C.

DSP2833x_DisInt.asm Disable interrupt and restore interrupt functions. These functions allow you
to disable INTM and DBGM and then later restore their state.

DSP2833x_usDelay.asm Assembly function to insert a delay time in microseconds. This function is
cycle dependant and must be executed from zero wait-stated RAM to be
accurate.

Refer to DSP2833x_examples\adc for an example of its use.

DSP2833x_CSMPasswords.asm Include in a project to program the code security module passwords and
reserved locations.

8.2.4 Example Linker .cmd files

Example memory linker command files are located in the DSP2833x_common\cmd directory.
For getting started the basic 28335_eZdsp_RAM_Ink.cmd file is suggested and used by
many of the included examples.

The SARAM blocks LO, L1, L2, and L3 are mirrored on these devices. For simplicity these
memory maps only include one instance of these memory blocks.

Table 19. Included Main Linker Command Files

Memory Linker Command Location Description
File Examples
28335_RAM _Ink.cmd DSP2833x_common\cmd | 28335/28235 memory linker command

file. Includes all of the internal SARAM
blocks on a 28335/28235 device. “RAM”
linker files do not include flash or OTP

28334_RAM_Ink.cmd DSP2833x_common\cmd | 28334/28234 SARAM memory linker
command file.

28332_RAM _Ink.cmd DSP2833x_common\cmd | 28332/28232 SARAM memory linker
command file.

F28335.cmd DSP2833x_common\cmd | F28335/F28235 memory linker command

file. Includes all Flash, OTP and CSM
password protected memory locations.

F28334.cmd DSP2833x_common\cmd | F28334/F28234 memory linker command
file.
F28332.cmd DSP2833x_common\cmd | F28332/ F28232 memory linker

command file.

42



‘v’f TexASs
INSTRUMENTS

V'1.10 Quick Start Readme

8.2.5 Example Library .lib Files

Example library files are located in the DSP2833x_commonllib directory. For this release the

IQMath library is included for use in the example projects. Please refer to the C28x IQMath
Library - A Virtual Floating Point Engine (SPRC087) for more information on IQMath and the
most recent IQMath library. The SFO libraries are also included for use in the example
projects. Please refer to TMS320x28xx, 28xxx HRPWM Reference Guide (SPRU924) for

more information on SFO library usage and the HRPWM module.

Table 20. Included Library Files

Main Liner Command File Description
Examples
IQmath.lib Please refer to the C28x IQMath Library - A Virtual Floating
Point Engine (SPRCO087) for more information on IQMath. This
is a fixed-point compiled library.
IQmathLib.h IQMath header file.
SFO_TI_Build.lib Please refer to the TMS320x28xx, 28xxx HRPWM Reference

Guide (SPRU924) for more information on the SFO library

SFO_TI_Build_fpu.lib

The floating-point equivalent of SFO_TI_Build.lib. See Section
4.6 for information about including fixed and floating point
libraries.

SFO.h

SFO header file

SFO_TI_Build_VS5.lib/
SFO_TI Build_V5B.lib

Please refer to the TMS320x28xx,28xxx HRPWM Reference

Guide (SPRU924) for more information on the SFO V5 library.
Updated versions will be marked with alphabetical characters
after “V5” (i.e. SFO_TI_Build_V5B.lib)

SFO_TI_Build_V5_fpu.lib/
SFO_TI_Build_V5B_fpu.lib

The floating-point equivalent of SFO_TI_Build_V5.lib. See
Section 4.6 for information about including fixed and floating
point libraries. Updated versions will be marked with
alphabetical characters after “V5” (i.e. SFO_TI_Build_V5B.lib)

SFO_V5.h

SFO V5 header file

43



*53 TeExAs

V1.10 Quick Start Readme INSTRUMENTS

9 Detailed Revision History:

44

Changes from V1.03 to V1.10

Changes to Header Files:

a) DSP2833x_Peripheral.gel- Collapsed eCAN register submenus into one submenu
each for eCAN-A and eCAN-B to reduce GEL submenu size (reaching Code
Composer Studio limit)

b) DSP2833x_Device.h- added types for int64 and Uint64.

c) DSP2833x_Headers_BIOS.cmd and DSP2833x_Headers_nonBIOS.cmd - Fixed
comments — “DMA Rev. 0” changed to “DMA”.

Changes to Common Files:

d) DSP2833x_SWPrioritizedDefaultlsr.c and DSP2833x_Defaultlsr.c — Removed
references to EMPTY_ISR(). The function is not used in any other file in header file
directory structure.

e) f28335.gel, 28334.gel, and f28332.gel — Collapsed several GEL submenus,
removed code which adds FPU registers to watch window upon connect, modified
important messages to appear only once upon file preload, and configured gel to
display an error message only when ADC not properly calibrated.

Changes to Example Files:

f) DSP2823x_examples - Added DSP2823x_examples folder with all of the same
examples as DSP2833x_examples (minus fpu) compiled with fixed-point code instead
of floating-point code because DSP2823x devices do not have an FPU.

g) Example2833x_SWPrioritizedDefaultlsr.c — Removed reference to EMPTY_ISR().
The function is not used in any other file in header file directory structure.

Changes from V1.02 to V1.03

Changes to Header Files:

a) DSP2833x_Headers_Bios.cmd — Added sections for ECAP5/ECAP6 and removed
SECTIONS definition for PIE_VECT.

b) DSP2833x_Gpio.h — Added missing QUALPRD1 field to GPBCTRL_BITS.
Changes to Common Files:

c) DSP2833x_SWPrioritizedDefaultlsr.c — Fixed some PIEIER number typos.



{’." TexASs
INSTRUMENTS V1.10 Quick Start Readme

d) SFO_TI_Build_V5B.lib and SFO_TI_Build_V5Bfpu.lib — Because the SFO_MepEn()
function in the original version of the SFO library was restricted to MEP control on
falling edge only with HRLOAD on CTR=ZRO, a new version of the V5 library, V5B,
was added, which includes a SFO_MepEn() function that supports all available
HRPWM configurations — falling and rising edge as well as HRLOAD on CTR=ZRO
and CTR=PRD.

Changes to Example Files:

e) Example_2833xECanBack2Back.c— Removed initialization code and replaced with
InitECana() function from DSP2833x_ECan.c file.

f) Example_2833xHRPWM.c — Modified configuration such that duty cycle really starts
at 50% (was off by 1 count) and fixed some minor typos.

Changes from V1.01 to V1.02

Changes to Header Files:

a) DSP2833x_Spi.h — Removed extern references to SPI-B to SPI-D (legacy from
DSP280x)

Changes to Common Files:

b) DSP2833x_Mcbsp.c — Removed GPAQSEL bit field updates to output-only MDXA
and MDXB GPIO pin configurations. Also set #define CLKGDV_VAL to default value
of 1.

c) F28335.gel, F28334.gel, and F28332.gel — Added ADC_Cal() function called in
OnRestart(), OnReset(), and OnFileLoaded(), and XINTF_enable() function called in
OnPreFileLoaded().

Changes to Example Files:

d) Xintf Examples — In init_zone7() function, added EALLOW and EDIS because XINTF
registers are now EALLOW-protected.

Changes from V1.00 to V1.01

Changes to Header Files:
a) DSP2833x_Peripheral.gel — Corrected location of External Interrupt registers.

b) DSP2833x_SysCtrl.h — Previously, Flash and OTP waitstates (PAGEWAIT,
RANDWAIT, and OTPWAIT) were configured for 100 MHz SYSCLKOUT. Hooks for
150 MHz SYSCLKOUT have been added to configure them for 150 MHz
SYSCLKOUT as well.

c) DSP2833x_Mcbsp.h — Removed MFFST register. It no longer applies to 2833x
McBSP.

Changes to Common Files:

45



*53 TeExAS
V1.10 Quick Start Readme INSTRUMENTS

d) DSP2833x_Defaultlsr.h — Was previously incorrectly named
DSP2833x_DefaultlISR.h. Naming has been fixed.

a) DSP2833x_Mcbsp.c — Removed references to MFFST register.

Changes to Example Files:

b) Example_2833xCpuTimer.c — Added hooks to switch between 150MHz
SYSCLKOUT and 100MHz SYSCLKOUT when generating a 1 second timer interrupt.

c) Example_2833xMcBSP_DLB_DMA.c, Example_2833xMcBSP_DLB int.c —
Removed references to MFFST register.

d) Example_2833xFlash.c — Changed toggling GPIO pin from GPIO34 to GP1032
(GPIO32 corresponds to LED on 2833x eZdsp)

e) Example_2833xLEDBIink.c — Created new example in timed_led_blink/ example
directory which toggles GPIO32 to turn the eZdsp on and off at a 1 Hz rate.

V1.00

O This version is the first customer release of the DSP2833x header files and examples.

46



