
Texas Instruments Inc., May 2002

Signal Generator Library

Module user’s Guide

C28x Foundation Software

Texas Instruments Inc., May 2002

Texas Instruments Inc., May 2002

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or
to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on is
current and complete. All products are sold subject to the terms and conditions of sale supplied at
the time of order acknowledgement, including those pertaining to warranty, patent infringement,
and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time
of sale in accordance with TI’s standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all
parameters of each device is not necessarily performed, except those mandated by government
requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance or customer product design. TI does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of TI covering or relating to any
combination, machine, or process in which such products or services might be or are used. TI’s
publication of information regarding any third party’s products or services does not constitute TI’s
approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is
without alteration and is accompanied by all associated warranties, conditions, limitations and
notices. Representation or reproduction of this information with alteration voids all warranties
provided for an associated TI product or service, is an unfair and deceptive business practice,
and TI is not responsible or liable for any such use.

Resale of TI’s products or services with statements different from or beyond the parameters
stated by TI for that products or service voids all express and any implied warranties for the
associated TI product or service, is an unfair and deceptive business practice, and TI is not
responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products.
www.ti.com/sc/docs/stdterms.htm

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2002, Texas Instruments Incorporated

Texas Instruments Inc., May 2002

Trademarks
TMS320 is the trademark of Texas Instruments Incorporated.
All other trademark mentioned herein are property of their respective companies

Acronyms
xDAIS : eXpress DSP Algorithm Interface Standard
IALG : Algorithm interface defines a framework independent interface for the creation of

 algorithm instance objects
STB : Software Test Bench
QMATH: Fixed Point Mathematical computation
CcA : C-Callable Assembly
FIR : Finite Impulse Response Filter
IIR : Infinite Impulse Response Filter
FFT : Fast Fourier Transform

Texas Instruments Inc., May 2002

CCCooonnnttteeennntttsss
1. Introduction……..1

2. SIN Generator……...1

 2.1. Standard THD Sin generator ...1

 2.2. Low THD sin generator ...1

 2.3. High precision sin generator ..1

3. Signal Generator Modules……………..5

 3.1. SGENT_1: Single Channel SIN Generator (Table look-up)…….....................................5

 3.2. SGENT_2: Dual Channel SIN Generator (Table look -up)…….....................................11

 3.3. SGENT_3: 3φ SIN Generator (Table look-up)……..17

 3.4. SGENT_3D: Dual 3φ SIN Generator (Table look-up)…… ...23

 3.5. SGENTI_1: Single Channel SIN Generator (Table look-up and Linear Interpolation)… .29

 3.6. SGENTI_2: Dual Channel SIN Generator (Table look-up and Linear Interpolation)……35

 3.7. SGENTI_3: 3φ SIN Generator (Table look-up and Linear interpolation)……41

 3.8. SGENTI_3D: Dual 3φ SIN Generator (Table look -up and Linear Interpolation)…….......47

 3.9. SGENHP_1: High Precision SIN Generator (Table look-up and Linear Interpolation)… 53

 3.10. SGENHP_2: High Precision SIN Generator (Table look-up and Linear Interpolation) ..59

 3.11. RMPGEN: Ramp Generator…… ...65

 3.12. TZDLGEN: Trapezoidal generator ...71

 3.13. PROFILE: Profile generator… ...77

Texas Instruments Inc., May 2002

Texas Instruments Inc., May 2002 1

Introduction

1. Introduction

The signal generator module repository contains SIN generation, ramp generation and
trapezoidal generation modules. The signal generator modules are implemented using
modulo arithmetic counter (i.e. Any overflow is ignored and only the remainder is kept) to
precisely control the frequency. The frequency of the generated signal is reciprocal of the
time it takes for successive overflow of modulo counter, which in turn commensurate with the
step value added to the counter. Thus by changing the step value, one can precisely control
the frequency.

The step value is not directly commanded to vary the frequency, instead the modulation of
frequency is performed using the normalized variable “freq” which is normalized to the
maximum frequency. The maximum required frequency is predetermined based on the
application requirement and it set by initializing the “step_max” input. Thus, the normalized
variable “freq” allows the user to control the frequency of the signal between 0 to maximum
frequency. This strategy is adopted for all signal generator modules

2. SIN Generation

The signal generator repository contains comprehensive set of SIN generation modules viz.,
Single channel, Dual channel, 3φ and dual 3φ SIN generator to cater to various application
requirements. Single and Dual channel modules are available in three forms viz., Standard
THD version (SGENT_xx, Low THD version (SGENTI_xx) and High precision version
(SGENHP_xx). The 3φ and dual 3φ SIN generator are available in two forms viz., Standard
THD version (SGENT_xx) and Low THD version (SGENTI_xx).

 2.1. Standard THD sin generator (SGENT_1, SGENT_2, SGENT_3& SGENT_3D)

The standard THD sine generators are implemented using direct table look-up technique
and it uses 16-bit modulo counter. Although a 16-bit counter is used, the upper byte (8-
bits) is used to index the 256-point look-up table and hence to obtain the SIN value.
Thus, by changing how quickly values overflow from lower byte (i.e., manipulating step
value) the frequency of the sine wave can be changed. Modulo counter ignores the
overflow or carry out of 16-bit counter and retains only the remainder. The graph shown
in page 2 exemplifies the error of the SIN output obtained using direct table look-up
technique with respect to the floating point results.

 2.2. Low THD sin generator (SGENTI_1, SGENTI_2, SGENTI_3& SGENTI_3D)

The low THD sin generators are implemented using Table look-up and linear interpolation
technique and it uses 16-bit modulo counter. The upper byte (8-bits) is used to index the
256-point look-up table and lower byte (8-bits) used to interpolate between the look-up
table entries. The graph shown in page 3 exemplifies the error of the SIN output obtained
using table look-up with linear interpolation technique with respect to the floating point
results.

 2.3. High Precision sin generator (SGENHP_1 & SGENHP_2)
The high precision sin generators are implemented using Table look-up and linear
interpolation technique and it uses 32-bit modulo counter. The high precision modules
allow precise frequency control because of the fact that it uses 32-bit value for frequency
input and also uses 32-bit modulo counter. The upper byte (8-bits) is used to index the
256-point look-up table and the 15-bits following the upper byte are used to interpolate
between the look-up table entries. The graph shown in page 4 exemplifies the error of the
SIN output obtained with this implementation with respect to the floating-point results.

Texas Instruments Inc., May 2002 2

Standard THD sin generator (SGENT_1, SGENT_2, SGENT_3 & SGENT_3D) error graph

SIN(x) Obtained by C-float (Q15 format)

-36000

-24000

-12000

0

12000

24000

36000

0 1 2 3 4 5 6
Input 'x' (in radians)

S
IN

(x
)

SIN(x) Obtained by Direct table look-up technique (in Q15 format)

-36000

-24000

-12000

0

12000

24000

36000

0 1 2 3 4 5 6
Input 'x' (in radians)

S
IN

(x
)

Error with respect to Floating point

-800

-600

-400

-200

0

200

400

600

800

0 1 2 3 4 5 6

Input 'x' (in radians)

E
rr

or
 (

in
 C

ou
nt

s)

Texas Instruments Inc., May 2002 3

Low THD sin generator (SGENTI_1, SGENTI_2, SGENTI_3& SGENTI_3D) error graph

SIN(x) Obtained by C-float (Q15 format)

-36000

-24000

-12000

0

12000

24000

36000

0 1 2 3 4 5 6
Input 'x' (in radians)

S
IN

(x
)

Error with respect to Floating point

-6

-4

-2

0

2

4

6

0 1 2 3 4 5 6

Input 'x' (in radians)

E
rr

or
 (

in
 C

ou
nt

s)

SIN(x) Obtained by table look-up with linear interpolation (in Q15 format)

-36000

-24000

-12000

0

12000

24000

36000

0 1 2 3 4 5 6
Input 'x' (in radians)

S
IN

(x
)

Texas Instruments Inc., May 2002 4

High Precision sin generator (SGENHP_1 & SGENHP_2) error graph

SIN(x) Obtained by C-float (Q15 format)

-36000

-24000

-12000

0

12000

24000

36000

0 1 2 3 4 5 6
Input 'x' (in radians)

S
IN

(x
)

SIN(x) Obtained by table look-up with linear interpolation (in Q15 format)

-36000

-24000

-12000

0

12000

24000

36000

0 1 2 3 4 5 6
Input 'x' (in radians)

S
IN

(x
)

Error with respect to Floating point

-6

-4

-2

0

2

4

6

0 1 2 3 4 5 6

Input 'x' (in radians)

E
rr

or
 (

in
 C

ou
nt

s)

Texas Instruments Inc., May 2002 5

Description This module generates single channel digital SIN signal using direct

table look -up technique.

Availability C-Callable Assembly (CcA)

Module Properties Type: Target Independent, Application Dependent

 Target Devices: x28xx

C-Callable Assembly Files: sgt1c.asm, sintb360.asm, sgen.h

Item C-Callable ASM Comments

Code Sizeÿ 16 +257words +
cinit•

257 Look-up Table entries

Data RAM 0 words •

xDAIS ready Yes
 xDAIS component No IALG layer not implemented
 Multiple instances Yes
 Reentrancy Yes

Multiple Invocation

Yes

Stack usage 2 words Stack grows by 2 words

 • Each pre-initialized SGENT_1 structure consumes 8 words in the data
memory and 11 words in the cinit section
∆∆ Each instance of SGENT_1 module consumes 8 words in Data
memory.

Single Channel SIN Generator (Table look-up) SGENT_1

out

freq

SGENT_1

gain

offset

step_max

Texas Instruments Inc., May 2002 6

C/C-Callable ASM Interface

C/C-Callable ASM Interface

Object Definition

The structure of SGENT_1 object is defined by the following structure definition

typedef struct {
 unsigned int freq;
 unsigned int step_max;
 unsigned int alpha;
 int gain;
 int offset;
 int out;
 void (*calc)(void *);
} SGENT_1;

Module Terminal Variables/Functions

Item Name Description Format Range(Hex)

freq Frequency in hertz between []MAXF,0

normalized to []1,0

Q15 0-7FFF

offset DC offset in the SIN signal Q15 8000-7FFF

gain Gain of the SIN signal Q15 0-7FFF

Input

step_max

65536
max_ S

MAX

Fstep
F

×
= .

The default value is set to 1000 to
generate the maximum frequency of
305.17Hz using 20KHz sampling loop.

Q0 0000-7FFF

Output out SIN Output Q15 8000-7FFF

Special Constants and Data types

 SGENT_1

The module definition is created as a data type. This makes it convenient to instance an
interface to the signal generator module. To create multiple instances of the module
simply declare variables of type SGENT_1

SGENT_1_handle
User defined Data type of pointer to SGENT_1 Module

 SGENT_1_DEFAULTS

Structure symbolic constant to Initialize SGENT_1 Module. This provides the initial values
to the terminal variables as well as method pointers.

Methods
 void (*calc)(void *);

This function implements the single channel digital SIN signal generation using direct
table look -up technique.

Texas Instruments Inc., May 2002 7

C/C-Callable ASM Interface

Module Usage

Instantiation
 The following example instances empty signal generator object
 SGENT_1 sgen;

 Initialization

To Instance pre-initialized object
SGENT_1 sgen = SGENT_1_DEFAULTS;

Invoking the computation function
sgen.calc(&sgen);

Example

The following pseudo code exemplifies, 50Hz single channel digital SIN signal generation
using SGENT_1 module.

#include <sgen.h>

SGENT_1 sgen=SGENT_1_DEFAULTS;

 int x1;
main ()
{

sgen.offset=0;
 sgen.gain=0x7fff; /* gain=1 in Q15 */
 sgen.freq=5369; /* freq = (Required Freq/Max Freq)*2^15 */
 /* = (50/305.17)*2^15 = 5369 */
 sgen.step_max=1000; /* Max Freq= (step_max * sampling freq)/65536 */
 /* Max Freq = (1000*20k)/65536 = 305.17 */

}

void interrupt isr_20khz()
{

sgen.calc(&sgen);
 x1=sgen.out;

}

Note: Edit Linker Command file, to place the look-up table in Program memory.

SINTBL > PROG PAGE 0

Texas Instruments Inc., May 2002 8

Background Information

Background Information

The signal generator modules are implemented using modulo arithmetic counter (i.e. Any
overflow is ignored and only the remainder is kept) to precisely control the frequency. The
frequency of the generated signal is reciprocal of the time it takes for successive overflow of
modulo counter, which in turn commensurate with the step value added to the counter. Thus
by changing the step value, one can precisely control the frequency.

The step value is not directly commanded to vary the frequency, instead the modulation of
frequency is performed using the normalized variable “freq” which is normalized to the
maximum frequency. The maximum required frequency is predetermined based on the
application requirement and it set by initializing the “step_max” input. Thus, the normalized
variable “freq” allows the user to control the frequency of the signal between 0 to maximum
frequency.

The standard THD sine generators are implemented using direct table look-up technique and
it uses 16-bit modulo counter. Although a 16-bit counter is used, the upper byte (8-bits) is
used to index the 256-point look -up table and hence to obtain the SIN value. Thus, by
changing how quickly values overflow from lower byte (i.e., manipulating step value) the
frequency of the sine wave can be changed. Modulo counter ignores the overflow or carry out
of 16-bit counter and retains only the remainder. The graph shown in page 2 exemplifies the
error of the SIN output obtained using direct table look-up technique with respect to the
floating point results.

The amount of time it takes for the 16-bit modulo counter to overflow, assuming that the
counter is incremented in ISR.

ISRISR T
step

T
step

T ×=×=
65536216

 (1)

The frequency of the generated SIN wave is reciprocal of the time, hence

 ISRF
step

F ×=
65536

 (2)

 Where
ISR

ISR
T

F
1

= is the ISR invocation frequency.

Thus the actual frequency of the SIN wave is determined by the “step” value used to
increment the modulo-counter and the ISR execution rate. The signal generator modules use
the normalized control variable to modulate the frequency instead of directly commanding the
step value. The frequency control variable is normalized with respect to the maximum
frequency.

Assuming that the application requires the maximum frequency of 500Hz using 20Khz ISR
loop. Then the step value to generate 500Hz is determined using equation (2)

 4.1638
20000

65536500
=

×
=step

Texas Instruments Inc., May 2002 9

Background Information

This step value of 1638 is used to initialize the “step_max” element of the signal generator
module. The normalized control variable “freq” helps to control the frequency from 0 to 500Hz
by varying it between 0 to 1 (Q15 format) with the frequency resolution of 0.305Hz

The frequency resolution is =
max_step

FMAX , hence the “step_max” should be high to get good

frequency resolution. It should be set to at least “100” for reasonable frequency resolution.

To generate SIN signal of frequency f , initialize the “freq” element of the SIN generator

module to 152×
MAXf

f
. Thus the required frequency is normalized with respect to the

maximum frequency as set by “step_max” and input as Q15 number to the SIN generator
module.

Texas Instruments Inc., May 2002 10

Texas Instruments Inc., May 2002 11

Description This module generates dual channel digital SIN signal with phase control

using direct table look-up technique.

Availability C-Callable Assembly (CcA)

Module Properties Type: Target Independent, Application Dependent

 Target Devices: x28xx

C-Callable Assembly files: sgt2c.asm, sintb360.asm, sgen.h

Item C-Callable ASM Comments

Code Sizeÿ 24 words + 257 +
cinit•

257 Look-up Table entries

Data RAM 0 words •

xDAIS ready Yes
 xDAIS component No IALG layer not implemented
 Multiple instances Yes
 Reentrancy Yes

Multiple Invocation

Yes

Stack usage 2 words Stack grows by 2 words

 • Each pre-initialized SGENT_2 structure consumes 10 words in the
data memory and 13 words in the cinit section
∆∆ Each instance of SGENT_2 module consumes 10 words in Data
memory.

Dual Channel SIN Generator (Table look-up)SGENT_2

out1

SGENT_2

freq

gain

offset

step_max

phase

out2

Texas Instruments Inc., May 2002 12

C/C-Callable ASM Interface

C/C-Callable ASM Interface

Object Definition

The structure of SGENT_2 object is defined by the following structure definition

typedef struct {
 unsigned int freq;
 unsigned int step_max;
 unsigned int alpha;
 int gain;
 int offset;
 int out1;
 unsigned int phase;
 int out2;
 void (*calc)(void *);
} SGENT_2;

Module Terminal Variables/Functions

Item Name Description Format Range(Hex)

freq Frequency in hertz between []MAXF,0

normalized to []1,0

Q15 0-7FFF

offset DC offset in the SIN signal Q15 8000-7FFF

gain Gain of the SIN signal Q15 0-7FFF

phase Phase angle between the two SIN outputs
[]ππ +− , is normalized to []1,1+−

Q15 8000-7FFF

Input

step_max

65536
max_ S

MAX

Fstep
F

×
= .

The default value is set to 1000 to
generate the maximum frequency of
305.17Hz using 20KHz sampling loop.

Q0 0000-7FFF

out1 SIN Output 1 à ()θsin Q15 8000-7FFF Output

out2 SIN Output 2 à ()phase+θsin Q15 8000-7FFF

Special Constants and Data type s

 SGENT_2

The module definition is created as a data type. This makes it convenient to instance an
interface to the signal generator module. To create multiple instances of the module
simply declare variables of type SGENT_2

SGENT_2_handle
User defi ned Data type of pointer to SGENT_2 Module

 SGENT_2_DEFAULTS

Structure symbolic constant to Initialize SGENT_2 Module. This provides the initial values
to the terminal variables as well as method pointers.

Texas Instruments Inc., May 2002 13

C/C-Callable ASM Interface

Methods
 void (*calc)(void *);

This function implements the dual channel digital SIN signal generation with phase
control using direct table look-up technique.

Module Usage

Instantiation
 The following example instances empty signal generator object
 SGENT_2 sgen;

 Initialization

To Instance pre-initialized object
SGENT_2 sgen = SGENT_2_DEFAULTS;

Invoking the computation function
sgen.calc(&sgen);

Example

The following pseudo code exemplifies, two 50Hz digital SIN signal generation with
90deg phase shift using SGENT_2 module.

#include <sgen.h>

SGENT_2 sgen=SGENT_2_DEFAULTS;

 Int x1, x2;

main ()
{

sgen.offset=0;
 sgen.gain=0x7fff; /* gain = 1 in Q15 */
 sgen.freq=5369; /* freq = (Required Freq/Max Freq)*2^15 */
 /* = (50/305.17)*2^15 = 5369 */
 sgen.step_max=1000; /* Max Freq= (step_max * sampling freq)/65536 */
 /* Max Freq = (1000*20k)/65536 = 305.17 */

 sgen.phase=4000h /* Phase = (required Phase)/180 in Q15 */
 /* = (+90/180) in Q15 = 4000h */

}

void interrupt isr_20khz()
{

sgen.calc(&sgen);
 x1=sgen.out1;
 x2=sgen.out2;

}

Note: Edit Linker Command file, to place the look-up table in Program memory.

SINTBL > PROG PAGE 0

Texas Instruments Inc., May 2002 14

Background Information

Background Information

The signal generator modules are implemented using modulo arithmetic counter (i.e. Any
overflow is ignored and only the remainder is kept) to precisely control the frequency. The
frequency of the generated signal is reciprocal of the time it takes for successive overflow of
modulo counter, which in turn commensurate with the step value added to the counter. Thus
by changing the step value, one can precisely control the frequency.

The step value is not directly commanded to vary the frequency, instead the modulation of
frequency is performed using the normalized variable “freq” which is normalized to the
maximum frequency. The maximum required frequency is predetermined based on the
application requirement and it set by initializing the “step_max” input. Thus, the normalized
variable “freq” allows the user to control the frequency of the signal between 0 to maximum
frequency.

The standard THD sine generators are implemented using direct table look-up technique and
it uses 16-bit modulo counter. Although a 16-bit counter is used, the upper byte (8-bits) is
used to index the 256-point look -up table and hence to obtain the SIN value. Thus, by
changing how quickly values overflow from lower byte (i.e., manipulating step value) the
frequency of the sine wave can be changed. Modulo counter ignores the overflow or carry out
of 16-bit counter and retains only the remainder. The graph shown in page 2 exemplifies the
error of the SIN output obtained using direct table look-up technique with respect to the
floating point results.

The amount of time it takes for the 16-bit modulo counter to overflow, assuming that the
counter is incremented in ISR.

ISRISR T
step

T
step

T ×=×=
65536216

 (1)

The frequency of the generated SIN wave is reciprocal of the time, hence

 ISRF
step

F ×=
65536

 (2)

 Where
ISR

ISR
T

F
1

= is the ISR invocation frequency.

Thus the actual frequency of the SIN wave is determined by the “step” value used to
increment the modulo-counter and the ISR execution rate. The signal generator modules use
the normalized control variable to modulate the frequency instead of directly commanding the
step value. The frequency control variable is normalized with respect to the maximum
frequency.

Assuming that the application requires the maximum frequency of 500Hz using 20Khz ISR
loop. Then the step value to generate 500Hz is determined using equation (2)

 4.1638
20000

65536500
=

×
=step

Texas Instruments Inc., May 2002 15

Background Information

This step value of 1638 is used to initialize the “step_max” element of the signal generator
module. The normalized control variable “freq” helps to control the frequency from 0 to 500Hz
by varying it between 0 to 1 (Q15 format) with the frequency resolution of 0.305Hz

The frequency resolution is =
max_step

FMAX , hence the “step_max” should be high to get good

frequency resolution. It should be set to at least “100” for reasonable frequency resolution.

To generate SIN signal of frequency f , initialize the “freq” element of the SIN generator

module to 152×
MAXf

f
. Thus the required frequency is normalized with respect to the

maximum frequency as set by “step_max” and input as Q15 number to the SIN generator
module.

Texas Instruments Inc., May 2002 16

Texas Instruments Inc., May 2002 17

Description This module generates 3-phase digital SIN signal with fixed 120° phase

shift between the channels using direct table look-up technique.

Availability C-Callable Assembly (CcA)

Module Properties Type: Target Independent, Application Dependent

 Target Devices: x28xx

C-Callable Assembly files: sgt3c.asm, sintb360.asm, sgen.h

Item C-Callable ASM Comments

Code Sizeÿ 34 words + 257 +
cinit•

257 Look-up Table entries

Data RAM 0 words •

xDAIS ready Yes
 xDAIS component No IALG layer not implemented
 Multiple instances Yes
 Reentrancy Yes

Multiple Invocation

Yes

Stack usage 2 words Stack grows by 2 words

 • Each pre-initialized SGENT_3 structure consumes 10 words in the
data memory and 13 words in the cinit section
∆∆ Each instance of SGENT_3 module consumes 10 words in Data
memory.

Three Phase SIN Generator (Table look-up)SGENT_3

out1

SGENT_3

freq

gain

offset

step_max out3

out2

Texas Instruments Inc., May 2002 18

C/C-Callable ASM Interface

C/C-Callable ASM Interface

Object Definition

The structure of SGENT_3 object is defined by the following structure definition

typedef struct {
 unsigned int freq;
 unsigned int step_max;
 unsigned int alpha;
 int gain;
 int offset;
 int out1;
 int out2;
 int out3;
 void (*calc)(void *);
} SGENT_3;

Module Terminal Variables/Functions

Item Name Description Format Range(Hex)

freq Frequency in hertz between []MAXF,0

normalized to []1,0

Q15 0-7FFF

offset DC offset in the SIN signal Q15 8000-7FFF

gain Gain of the SIN signal Q15 0-7FFF

Input

step_max

65536
max_ S

MAX

Fstep
F

×
= .

The default value is set to 1000 to
generate the maximum frequency of
305.17Hz using 20KHz sampling loop.

Q0 0000-7FFF

out1 SIN Output 1 à ()θsin Q15 8000-7FFF

out2 SIN Output 2 à ()o120sin +θ Q15 8000-7FFF

Output

out3 SIN Output 3 à ()o240sin +θ Q15 8000-7FFF

Special Constants and Data types

 SGENT_3

The module definition is created as a data type. This makes it convenient to instance an
interface to the signal generator module. To create multiple instances of the module
simply declare variables of type SGENT_3

SGENT_3_handle
User defined Data type of pointer to SGENT_3 Module

 SGENT_3_DEFAULTS

Structure symbolic constant to Initialize SGENT_3 Module. This provides the initial values
to the terminal variables as well as method pointers.

Texas Instruments Inc., May 2002 19

C/C-Callable ASM Interface

Methods
 void (*calc)(void *);

This function implements 3-phase digital SIN signal generation with fixed 120° phase shift
between the channels using direct table look-up technique.

Module Usage
Instantiation

 The following example instances empty generic signal generator object
 SGENT_3 sgen;

 Initialization

To Instance pre-initialized object
SGENT_3 sgen = SGENT_3_DEFAULTS;

Invoking the computation function
sgen.calc(&sgen);

Example
The following pseudo code exemplifies, 3-phase digital SIN signal (50Hz) generation using
SGENT_3 module.

#include <sgen.h>

SGENT_3 sgen=SGENT_3_DEFAULTS;

 Int x1, x2, x3;

main ()
{

sgen.offset=0;
 sgen.gain=0x7fff; /* gain = 1 in Q15 */
 sgen.freq=5369; /* freq = (Required Freq/Max Freq)*2^15 */
 /* = (50/305.17)*2^15 = 5369 */
 sgen.step_max=1000; /* Max Freq= (step_max * sampling freq)/65536 */
 /* Max Freq = (1000*20k)/65536 = 305.17 */

 sgen.phase=4000h /* Phase = (required Phase)/180 in Q15 */
 /* = (+90/180) in Q15 = 4000h */

}

void interrupt isr_20khz()
{

sgen.calc(&sgen);
 x1=sgen.out1;
 x2=sgen.out2;

 x3=sgen.out3;
}

Note: Edit Linker Command file, to place the look-up table in Program memory.

SINTBL > PROG PAGE 0

Texas Instruments Inc., May 2002 20

Background Information

Background Information

The signal generator modules are implemented using modulo arithmetic counter (i.e. Any
overflow is ignored and only the remainder is kept) to precisely control the frequency. The
frequency of the generated signal is reciprocal of the time it takes for successive overflow of
modulo counter, which in turn commensurate with the step value added to the counter. Thus
by changing the step value, one can precisely control the frequency.

The step value is not directly commanded to vary the frequency, instead the modulation of
frequency is performed using the normalized variable “freq” which is normalized to the
maximum frequency. The maximum required frequency is predetermined based on the
application requirement and it set by initializing the “step_max” input. Thus, the normalized
variable “freq” allows the user to control the frequency of the signal between 0 to maximum
frequency.

The standard THD sine generators are implemented using direct table look-up technique and
it uses 16-bit modulo counter. Although a 16-bit counter is used, the upper byte (8-bits) is
used to index the 256-point look -up table and hence to obtain the SIN value. Thus, by
changing how quickly values overflow from lower byte (i.e., manipulating step value) the
frequency of the sine wave can be changed. Modulo counter ignores the overflow or carry out
of 16-bit counter and retains only the remainder. The graph shown in page 2 exemplifies the
error of the SIN output obtained using direct table look-up technique with respect to the
floating point results.

The amount of time it takes for the 16-bit modulo counter to overflow, assuming that the
counter is incremented in ISR.

ISRISR T
step

T
step

T ×=×=
65536216

 (1)

The frequency of the generated SIN wave is reciprocal of the time, hence

 ISRF
step

F ×=
65536

 (2)

 Where
ISR

ISR
T

F
1

= is the ISR invocation frequency.

Thus the actual frequency of the SIN wave is determined by the “step” value used to
increment the modulo-counter and the ISR execution rate. The signal generator modules use
the normalized control variable to modulate the frequency instead of directly commanding the
step value. The frequency control variable is normalized with respect to the maximum
frequency.

Assuming that the application requires the maximum frequency of 500Hz using 20Khz ISR
loop. Then the step value to generate 500Hz is determined using equation (2)

 4.1638
20000

65536500
=

×
=step

Texas Instruments Inc., May 2002 21

Background Information

This step value of 1638 is used to initialize the “step_max” element of the signal generator
module. The normalized control variable “freq” helps to control the frequency from 0 to 500Hz
by varying it between 0 to 1 (Q15 format) with the frequency resolution of 0.305Hz

The frequency resolution is =
max_step

FMAX , hence the “step_max” should be high to get good

frequency resolution. It should be set to at least “100” for reasonable frequency resolution.

To generate SIN signal of frequency f , initialize the “freq” element of the SIN generator

module to 152×
MAXf

f
. Thus the required frequency is normalized with respect to the

maximum frequency as set by “step_max” and input as Q15 number to the SIN generator
module.

Texas Instruments Inc., May 2002 22

Texas Instruments Inc., May 2002 23

Description This module generates dual, 3-phase digital SIN signal with fixed 120°

phase shift between the channels and phase control between the two
three phase signals using direct table look-up technique.

Availability C-Callable Assembly (CcA)

Module Properties Type: Target Independent, Application Dependent

 Target Devices: x28xx

C-Callable Assembly files: sgt3dc.asm, sintb360.asm, sgen.h

Item C-Callable ASM Comments

Code Sizeÿ 63 words + 257 +
cinit•

257 Look-up Table entries

Data RAM 0 words •

xDAIS ready Yes
 xDAIS component No IALG layer not implemented
 Multiple instances Yes
 Reentrancy Yes

Multiple Invocation

Yes

Stack usage 2 words Stack grows by 2 words

 • Each pre-initialized SGENT_3D structure consumes 14 words in the
data memory and 17 words in the cinit section
∆∆ Each instance of SGENT_3D module consumes 14 words in Data
memory.

Dual, three Phase SIN Generator (Table look-up)SGENT_3D

SGENT_3D

freq

gain

offset

step_max

phase

out11

out13

out12

out21

out23

out22

Texas Instruments Inc., May 2002 24

C/C-Callable ASM Interface

C/C-Callable ASM Interface

Object Definition

The structure of SGENT_3D object is defined by the following structure definition

typedef struct {
 unsigned int freq;
 unsigned int step_max;
 unsigned int alpha;
 int gain;
 int offset;
 int out11;
 int out12;
 int out13;
 unsigned int phase;
 int out21;
 int out22;
 int out23;
 void (*calc)(void *);
} SGENT_3D;

Module Terminal Variables/Functions

Item Name Description Format Range

(Hex)

freq Frequency in hertz between []MAXF,0

normalized to []1,0

Q15 0-7FFF

offset DC offset in the SIN signal Q15 8000-7FFF

gain Gain of the SIN signal Q15 0-7FFF

Input

step_max

65536
max_ S

MAX

Fstep
F

×
= .

The default value is set to 1000 to generate
the maximum frequency of 305.17Hz using
20KHz sampling loop.

Q0 0000-7FFF

out11 SIN Output 11 à ()θsin Q15 8000-7FFF

out12 SIN Output 12 à ()o120sin +θ Q15 8000-7FFF

out13 SIN Output 13 à ()o240sin +θ Q15 8000-7FFF

out21 SIN Output 21 à ()phase+θsin Q15 8000-7FFF

out22 SIN Output 22 à ()phase++ o120sin θ Q15 8000-7FFF

Output

out23 SIN Output 23 à ()phase++ o240sin θ Q15 8000-7FFF

Texas Instruments Inc., May 2002 25

C/C-Callable ASM Interface

Special Constants and Data types

 SGENT_3D

The module definition is created as a data type. This makes it convenient to instance an
interface to the signal generator module. To create multiple instances of the module
simply declare variables of type SGENT_3D

SGENT_3D_handle
User defined Data type of pointer to SGENT_3D Module

 SGENT_3_DEFAULTS

Structure symbolic constant to Initialize SGENT_3D Module. This provides the initial
values to the terminal variables as well as method pointers.

Methods
 void (*calc)(void *);

This function implements two, 3-phase digital SIN signal generation with phase control
between the three phase signals using direct table look-up technique.

Module Usage

Instantiation
 The following example instances empty generic signal generator object
 SGENT_3D sgen;

 Initialization

To Instance pre-initialized object
SGENT_3D sgen = SGENT_3D_DEFAULTS;

Invoking the computation function
sgen.calc(&sgen);

Texas Instruments Inc., May 2002 26

C/C-Callable ASM Interface

Example
The following pseudo code exemplifies, dual 3-phase digital SIN signal (50Hz) generation with
90deg phase shift between the three phase signals using SGENT_3D module.

#include <sgen.h>

SGENT_3D sgen=SGENT_3D_DEFAULTS;

 Int x11, x12, x13, x21, x22, x23;

main ()
{

sgen.offset=0;
 sgen.gain=0x7fff; /* gain = 1 in Q15 */
 sgen.freq=5369; /* freq = (Required Freq/Max Freq)*2^15 */
 /* = (50/305.17)*2^15 = 5369 */
 sgen.step_max=1000; /* Max Freq= (step_max * sampling freq)/65536 */
 /* Max Freq = (1000*20k)/65536 = 305.17 */

 sgen.phase=4000h /* Phase = (required Phase)/180 in Q15 */
 /* = (+90/180) in Q15 = 4000h */

}

void interrupt isr_20khz()
{

sgen.calc(&sgen);
 x11=sgen.out11;
 x12=sgen.out12;

 x13=sgen.out13;
x21=sgen.out21;

 x22=sgen.out22;
 x23=sgen.out23;

}

Note: Edit Linker Command file, to place the look-up table in Program memory.

SINTBL > PROG PAGE 0

Texas Instruments Inc., May 2002 27

Background Information

Background Information

The signal generator modules are implemented using modulo arithmetic counter (i.e. Any
overflow is ignored and only the remainder is kept) to precisely control the frequency. The
frequency of the generated signal is reciprocal of the time it takes for successive overflow of
modulo counter, which in turn commensurate with the step value added to the counter. Thus
by changing the step value, one can precisely control the frequency.

The step value is not directly commanded to vary the frequency, instead the modulation of
frequency is performed using the normalized variable “freq” which is normalized to the
maximum frequency. The maximum required frequency is predetermined based on the
application requirement and it set by initializing the “step_max” input. Thus, the normalized

req” allows the user to control the frequency of the signal between 0 to maximum
frequency.

The standard THD sine generators are implemented using direct table look-up technique and
it uses 16-bit modulo counter. Although a 16-bit counter is used, the upper byte (8-bits) is
used to index the 256-point look -up table and hence to obtain the SIN value. Thus, by
changing how quickly values overflow from lower byte (i.e., manipulating step value) the
frequency of the sine wave can be changed. Modulo counter ignores the overflow or carry out
of 16-bit counter and retains only the remainder. The graph shown in page 2 exemplifies the
error of the SIN output obtained using direct table look-up technique with respect to the
floating point results.

The amount of time it takes for the 16-bit modulo counter to overflow, assuming that the
counter is incremented in ISR.

ISRISR T
step

T
step

T ×=×=
65536216

 (1)

The frequency of the generated SIN wave is reciprocal of the time, hence

 ISRF
step

F ×=
65536

 (2)

 Where
ISR

ISR
T

F
1

= is the ISR invocation frequency.

Thus the actual frequency of the SIN wave is determined by the “step” value used to
increment the modulo-counter and the ISR execution rate. The signal generator modules use
the normalized control variable to modulate the frequency instead of directly commanding the
step value. The frequency control variable is normalized with respect to the maximum
frequency.

Assuming that the application requires the maximum frequency of 500Hz using 20Khz ISR
loop. Then the step value to generate 500Hz is determined using equation (2)

 4.1638
20000

65536500
=

×
=step

Texas Instruments Inc., May 2002 28

Background Information

This step value of 1638 is used to initialize the “step_max” element of the signal generator
module. The normalized control variable “freq” helps to control the frequency from 0 to 500Hz
by varying it between 0 to 1 (Q15 format) with the frequency resolution of 0.305Hz

The frequency resolution is =
max_step

FMAX , hence the “step_max” should be high to get good

frequency resolution. It should be set to at least “100” for reasonable frequency resolution.

To generate SIN signal of frequency f , initialize the “freq” element of the SIN generator

module to 152×
MAXf

f
. Thus the required frequency is normalized with respect to the

maximum frequency as set by “step_max” and input as Q15 number to the SIN generator
module.

Texas Instruments Inc., May 2002 29

Description This module generates single channel digital SIN signal using table look-

up and linear interpolation technique.

Availability C-Callable Assembly (CcA)

Module Properties Type: Target Independent, Application Dependent

 Target Devices: x28xx

C-Callable Assembly Files: sgti1c.asm, sintb360.asm, sgen.h

Item C-Callable ASM Comments

Code Sizeÿ 26 words + 257 +
cinit•

257 Look-up Table entries

Data RAM 0 words •

xDAIS ready Yes
 xDAIS component No IALG layer not implemented
 Multiple instances Yes
 Reentrancy Yes

Multiple Invocation

Yes

Stack usage 2 words Stack grows by 2 words

 • Each pre-initialized SGENTI_1 structure consumes 8 words in the data
memory and 11 words in the cinit section
∆∆ Each instance of SGENTI_1 module consumes 8 words in Data
memory.

Single Channel SIN Generator (Table look-up and interpolation)SGENTI_1

out

freq

SGENTI_1

gain

offset

step_max

Texas Instruments Inc., May 2002 30

C/C-Callable ASM Interface

C/C-Callable ASM Interface

Object Definition

The structure of SGENTI_1 object is defined by the following structure definition

typedef struct {
 unsigned int freq;
 unsigned int step_max;
 unsigned int alpha;
 int gain;
 int offset;
 int out;
 void (*calc)(void *);
} SGENTI_1;

Module Terminal Variables/Functions

Item Name Description Format Range(Hex)

freq Frequency in hertz between []MAXF,0

normalized to []1,0

Q15 0-7FFF

offset DC offset in the SIN signal Q15 8000-7FFF

gain Gain of the SIN signal Q15 0-7FFF

Input

step_max

65536
max_ S

MAX

Fstep
F

×
= .

The default value is set to 1000 to
generate the maximum frequency of
305.17Hz using 20KHz sampling loop.

Q0 0000-7FFF

Output out SIN Output Q15 8000-7FFF

Special Constants and Data types

 SGENTI_1

The module definition is created as a data type. This makes it convenient to instance an
interface to the signal generator module. To create multiple instances of the module
simply declare variables of type SGENTI_1

SGENTI_1_handle
User defined Dat a type of pointer to SGENTI_1 Module

 SGENTI_1_DEFAULTS

Structure symbolic constant to Initialize SGENTI_1 Module. This provides the initial
values to the terminal variables as well as method pointers.

Methods
 void (*calc)(void *);

This function implements the single channel digital SIN signal generation using table
look-up and linear interpolation technique.

Texas Instruments Inc., May 2002 31

C/C-Callable ASM Interface

Module Usage

Instantiation
 The following example instances empty signal generator object
 SGENTI_1 sgen;

 Initialization

To Instance pre-initialized object
SGENTI_1 sgen = SGENTI_1_DEFAULTS;

Invoking the computation function
sgen.calc(&sgen);

Example

The following pseudo code exemplifies, 50Hz single channel digital SIN signal generation
using SGENTI_1 module.

#include <sgen.h>

SGENTI_1 sgen=SGENTI_1_DEFAULTS;

 int x1;
main ()
{

sgen.offset=0;
 sgen.gain=0x7fff; /* gain=1 in Q15 */
 sgen.freq=5369; /* freq = (Required Freq/Max Freq)*2^15 */
 /* = (50/305.17)*2^15 = 5369 */
 sgen.step_max=1000; /* Max Freq= (step_max * sampling freq)/65536 */
 /* Max Freq = (1000*20k)/65536 = 305.17 */

}

void interrupt isr_20khz()
{

sgen.calc(&sgen);
 x1=sgen.out;

}

Note: Edit Linker Command file, to place the look-up table in Program memory.

SINTBL > PROG PAGE 0

Texas Instruments Inc., May 2002 32

Background Information

Background Information

The signal generator modules are implemented using modulo arithmetic counter (i.e. Any
overflow is ignored and only the remainder is kept) to precisely control the frequency. The
frequency of the generated signal is reciprocal of the time it takes for successive overflow of
modulo counter, which in turn commensurate with the step value added to the counter. Thus
by changing the step value, one can precisely control the frequency.

The step value is not directly commanded to vary the frequency, instead the modulation of
frequency is performed using the normalized variable “freq” which is normalized to the
maximum frequency. The maximum required frequency is predetermined based on the
application requirement and it set by initializing the “step_max” input. Thus, the normalized
variable “freq” allows the user to control the frequency of the signal between 0 to maximum
frequency.

The low THD sin generators are implemented using Table look-up and linear interpolation
technique and it uses 16-bit modulo counter. The upper byte (8-bits) is used to index the 256-
point look-up table and lower byte (8-bits) used to interpolate between the look-up table
entries.

()1
12
12

1 xx
xx

yy
yy −×

−
−

+= (1)

The amount of time it takes for the 16-bit modulo counter to overflow, assuming that the
counter is incremented in ISR.

ISRISR T
step

T
step

T ×=×=
65536216

 (2)

 The frequency of the generated SIN wave is reciprocal of the time, hence

 ISRF
step

F ×=
65536

 (3)

 Where
ISR

ISR
T

F
1

= is the ISR invocation frequency.

Thus the actual frequency of the SIN wave is determined by the “step” value used to
increment the modulo-counter and the ISR execution rate.

The signal generator modules use the normalized control variable to modulate the
frequency instead of directly commanding the step value. The frequency control variable
is normalized with respect to the maximum frequency.

1x 2x

1y

2y

x

Texas Instruments Inc., May 2002 33

Background Information

Assuming that the application requires the maximum frequency of 500Hz using 20Khz ISR
loop. Then the step value to generate 500Hz is determined using equation (3)

4.1638
20000

65536500
=

×
=step

This step value of 1638 is used to initialize the “step_max” element of the signal generator
module. The normalized control variable “freq” helps to control the frequency from 0 to 500Hz
by varying it between 0 to 1 (Q15 format) with the frequency resolution of 0.305Hz

The frequency resolution is =
max_step

FMAX , hence the “step_max” should be high to get good

frequency resolution. It should be set to at least “100” for reasonable frequency resolution.

To generate SIN signal of frequency f , initialize the “freq” element of the SIN generator

module to 152×
MAXf

f
. Thus the required frequency is normalized with respect to the

maximum frequency as set by “step_max” and input as Q15 number to the SIN generator
module.

Texas Instruments Inc., May 2002 34

Texas Instruments Inc., May 2002 35

Description This module generates dual channel digital SIN signal with phase control

using table look-up and linear interpolation technique.

Availability C-Callable Assembly (CcA)

Module Properties Type: Target Independent, Application Dependent

 Target Devices: x28xx

C-Callable Assembly files: sgti2c.asm, sintb360.asm, sgen.h

Item C-Callable ASM Comments

Code Sizeÿ 45 words + 257 +
cinit•

257 Look-up Table entries

Data RAM 0 words •

xDAIS ready Yes
 xDAIS component No IALG layer not implemented
 Multiple instances Yes
 Reentrancy Yes

Multiple Invocation

Yes

Stack usage 2 words Stack grows by 2 words

 • Each pre-initialized SGENTI_2 structure consumes 10 words in the
data memory and 13 words in the cinit section
∆∆ Each instance of SGENTI_2 module consumes 10 words in Data
memory.

Dual Channel SIN Generator (Table look-up and Interpolation)SGENTI_2

out1

SGENTI_2

freq

gain

offset

step_max

phase

out2

Texas Instruments Inc., May 2002 36

C/C-Callable ASM Interface

C/C-Callable ASM Interface

Object Definition

The structure of SGENTI_2 object is defined by the following structure definition

typedef struct {
 unsigned int freq;
 unsigned int step_max;
 unsigned int alpha;
 int gain;
 int offset;
 int out1;
 unsigned int phase;
 int out2;
 void (*calc)(void *);
} SGENTI_2;

Module Terminal Variables/Functions

Item Name Description Format Range(Hex)

freq Frequency in hertz between []MAXF,0

normalized to []1,0

Q15 0-7FFF

offset DC offset in the SIN signal Q15 8000-7FFF

gain Gain of the SIN signal Q15 0-7FFF

phase Phase angle between the two SIN outputs
[]ππ +− , is normalized to []1,1+−

Q15 8000-7FFF

Input

step_max

65536
max_ S

MAX

Fstep
F

×
= .

The default value is set to 1000 to
generate the maximum frequency of
305.17Hz using 20KHz sampling loop.

Q0 0000-7FFF

out1 SIN Output 1 à ()θsin Q15 8000-7FFF Output

out2 SIN Output 2 à ()phase+θsin Q15 8000-7FFF

Special Constants and Data types

 SGENTI_2

The module definition is created as a data type. This makes it convenient to instance an
interface to the signal generator module. To create multiple instances of the module
simply declare variables of type SGENTI_2

SGENTI_2_handle
User defined Data type of pointer to SGENTI_2 Module

 SGENTI_2_DEFAULTS

Structure symbolic constant to Initialize SGENTI_2 Module. This provides the initial
values to the terminal variables as well as method pointers.

Texas Instruments Inc., May 2002 37

C/C-Callable ASM Interface

Methods
 void (*calc)(void *);

This function implements the dual channel digital SIN signal generation with phase
control using table look-up and linear interpolation technique.

Module Usage

Instantiation
 The following example instances empty signal generator object
 SGENTI_2 sgen;

 Initialization

To Instance pre-initialized object
SGENTI_2 sgen = SGENTI_2_DEFAULTS;

Invoking the computation function
sgen.calc(&sgen);

Example

The following pseudo code exemplifies, two 50Hz digital SIN signal generation with
90deg phase shift using SGENTI_2 module.

#include <sgen.h>

SGENTI_2 sgen=SGENTI_2_DEFAULTS;

 Int x1, x2;

main ()
{

sgen.offset=0;
 sgen.gain=0x7fff; /* gain = 1 in Q15 */
 sgen.freq=5369; /* freq = (Required Freq/Max Freq)*2^15 */
 /* = (50/305.17)*2^15 = 5369 */
 sgen.step_max=1000; /* Max Freq= (step_max * sampling freq)/65536 */
 /* Max Freq = (1000*20k)/65536 = 305.17 */

 sgen.phase=4000h /* Phase = (required Phase)/180 in Q15 */
 /* = (+90/180) in Q15 = 4000h */

}

void interrupt isr_20khz()
{

sgen.calc(&sgen);
 x1=sgen.out1;
 x2=sgen.out2;

}

Note: Edit Linker Command file, to place the look-up table in Program memory.

SINTBL > PROG PAGE 0

Texas Instruments Inc., May 2002 38

Background Information

Background Information

The signal generator modules are implemented using modulo arithmetic counter (i.e. Any
overflow is ignored and only the remainder is kept) to precisely control the frequency. The
frequency of the generated signal is reciprocal of the time it takes for successive overflow of
modulo counter, which in turn commensurate with the step value added to the counter. Thus
by changing the step value, one can precisely control the frequency.

The step value is not directly commanded to vary the frequency, instead the modulation of
frequency is performed using the normalized variable “freq” which is normalized to the
maximum frequency. The maximum required frequency is predetermined based on the
application requirement and it set by initializing the “step_max” input. Thus, the normalized
variable “freq” allows the user to control the frequency of the signal between 0 to maximum
frequency.

The low THD sin generators are implemented using Table look-up and linear interpolation
technique and it uses 16-bit modulo counter. The upper byte (8-bits) is used to index the 256-
point look-up table and lower byte (8-bits) used to interpolate between the look-up table
entries.

()1
12
12

1 xx
xx

yy
yy −×

−
−

+= (1)

The amount of time it takes for the 16-bit modulo counter to overflow, assuming that the
counter is incremented in ISR.

ISRISR T
step

T
step

T ×=×=
65536216

 (2)

 The frequency of the generated SIN wave is reciprocal of the time, hence

 ISRF
step

F ×=
65536

 (3)

 Where
ISR

ISR
T

F
1

= is the ISR invocation frequency.

Thus the actual frequency of the SIN wave is determined by the “step” value used to
increment the modulo-counter and the ISR execution rate.

The signal generator modules use the normalized control variable to modulate the
frequency instead of directly commanding the step value. The frequency control variable
is normalized with respect to the maximum frequency.

1x 2x

1y

2y

x

Texas Instruments Inc., May 2002 39

Background Information

Assuming that the application requires the maximum frequency of 500Hz using 20Khz ISR
loop. Then the step value to generate 500Hz is determined using equation (3)

4.1638
20000

65536500
=

×
=step

This step value of 1638 is used to initialize the “step_max” element of the signal generator
module. The normalized control variable “freq” helps to control the frequency from 0 to 500Hz
by varying it between 0 to 1 (Q15 format) with the frequency resolution of 0.305Hz

The frequency resolution is =
max_step

FMAX , hence the “step_max” should be high to get good

frequency resolution. It should be set to at-least “100” for reasonable frequency resolution.

To generate SIN signal of frequency f , initialize the “freq” element of the SIN generator

module to 152×
MAXf

f
. Thus the required frequency is normalized with respect to the

maximum frequency as set by “step_max” and input as Q15 number to the SIN generator
module.

Texas Instruments Inc., May 2002 40

Texas Instruments Inc., May 2002 41

Description This module generates 3-phase digital SIN signal with fixed 120° phase

shift between the channels using table look-up and linear interpolation
technique.

Availability C-Callable Assembly (CcA)

Module Properties Type: Target Independent, Application Dependent

 Target Devices: x28xx

C-Callable Assembly files: sgti3c.asm, sintb360.asm, sgen.h

Item C-Callable ASM Comments

Code Sizeÿ 66 words + 257 +
cinit•

257 Look-up Table entries

Data RAM 0 words •

xDAIS ready Yes
 xDAIS component No IALG layer not implemented
 Multiple instances Yes
 Reentrancy Yes

Multiple Invocation

Yes

Stack usage 2 words Stack grows by 2 words

 • Each pre-initialized SGENTI_3 structure consumes 10 words in the
data memory and 13 words in the cinit section
∆∆ Each instance of SGENTI_3 module consumes 10 words in Data
memory.

Three Phase SIN Generator (Table look-up and interpolation)SGENTI_3

out1

SGENTI_3

freq

gain

offset

step_max out3

out2

Texas Instruments Inc., May 2002 42

C/C-Callable ASM Interface

C/C-Callable ASM Interface

Object Definition

The structure of SGENTI_3 object is defined by the following structure definition

typedef struct {
 unsigned int freq;
 unsigned int step_max;
 unsigned int alpha;
 int gain;
 int offset;
 int out1;
 int out2;
 int out3;
 void (*calc)(void *);
} SGENTI_3;

Module Terminal Variables/Functions

Item Name Description Format Range(Hex)

freq Frequency in hertz between []MAXF,0

normalized to []1,0

Q15 0-7FFF

offset DC offset in the SIN signal Q15 8000-7FFF

gain Gain of the SIN signal Q15 0-7FFF

Input

step_max

65536
max_ S

MAX

Fstep
F

×
= .

The default value is set to 1000 to
generate the maximum frequency of
305.17Hz using 20KHz sampling loop.

Q0 0000-7FFF

out1 SIN Output 1 à ()θsin Q15 8000-7FFF

out2 SIN Output 2 à ()o120sin +θ Q15 8000-7FFF

Output

out3 SIN Output 3 à ()o240sin +θ Q15 8000-7FFF

Special Constants and Data types

 SGENTI_3

The module definition is created as a data type. This makes it convenient to instance an
interface to the signal generator module. To create multiple instances of the module
simply declare variables of type SGENTI_3

SGENTI_3_handle
User defined Data type of pointer to SGENTI_3 Module

 SGENTI_3_DEFAULTS

Structure symbolic constant to Initialize SGENTI_3 Module. This provides the initial
values to the terminal variables as well as method pointers.

Texas Instruments Inc., May 2002 43

C/C-Callable ASM Interface

Methods
 void (*calc)(void *);

This function implements 3-phase digital SIN signal generation with fixed 120° phase shift
between the channels using table look-up and linear interpolation technique.

Module Usage
Instantiation

 The following example instances empty generic signal generator object
 SGENTI_3 sgen;

 Initialization

To Instance pre-initialized object
SGENTI_3 sgen = SGENTI_3_DEFAULTS;

Invoking the computation function
sgen.calc(&sgen);

Example
The following pseudo code exemplifies, 3-phase digital SIN signal (50Hz) generation using
SGENTI_3 module.

#include <sgen.h>

SGENTI_3 sgen=SGENTI_3_DEFAULTS;

 Int x1, x2, x3;

main ()
{

sgen.offset=0;
 sgen.gain=0x7fff; /* gain = 1 in Q15 */
 sgen.freq=5369; /* freq = (Required Freq/Max Freq)*2^15 */
 /* = (50/305.17)*2^15 = 5369 */
 sgen.step_max=1000; /* Max Freq= (step_max * sampling freq)/65536 */
 /* Max Freq = (1000*20k)/65536 = 305.17 */

 sgen.phase=4000h /* Phase = (required Phase)/180 in Q15 */
 /* = (+90/180) in Q15 = 4000h */

}

void interrupt isr_20khz()
{

sgen.calc(&sgen);
 x1=sgen.out1;
 x2=sgen.out2;

 x3=sgen.out3;
}

Note: Edit Linker Command file, to place the look-up table in Program memory.

SINTBL > PROG PAGE 0

Texas Instruments Inc., May 2002 44

Background Information

Background Information

The signal generator modules are implemented using modulo arithmetic counter (i.e. Any
overflow is ignored and only the remainder is kept) to precisely control the frequency. The
frequency of the generated signal is reciprocal of the time it takes for successive overflow of
modulo counter, which in turn commensurate with the step value added to the counter. Thus
by changing the step value, one can precisely control the frequency.

The step value is not directly commanded to vary the frequency, instead the modulation of
frequency is performed using the normalized variable “freq” which is normalized to the
maximum frequency. The maximum required frequency is predetermined based on the
application requirement and it set by initializing the “step_max” input. Thus, the normalized
variable “freq” allows the user to control the frequency of the signal between 0 to maximum
frequency.

The low THD sin generators are implemented using Table look-up and linear interpolation
technique and it uses 16-bit modulo counter. The upper byte (8-bits) is used to index the 256-
point look-up table and lower byte (8-bits) used to interpolate between the look-up table
entries.

()1
12
12

1 xx
xx

yy
yy −×

−
−

+= (1)

The amount of time it takes for the 16-bit modulo counter to overflow, assuming that the
counter is incremented in ISR.

ISRISR T
step

T
step

T ×=×=
65536216

 (2)

 The frequency of the generated SIN wave is reciprocal of the time, hence

 ISRF
step

F ×=
65536

 (3)

 Where
ISR

ISR
T

F
1

= is the ISR invocation frequency.

Thus the actual frequency of the SIN wave is determined by the “step” value used to
increment the modulo-counter and the ISR execution rate.

The signal generator modules use the normalized control variable to modulate the
frequency instead of directly commanding the step value. The frequency control variable
is normalized with respect to the maximum frequency.

1x 2x

1y

2y

x

Texas Instruments Inc., May 2002 45

Background Information

Assuming that the application requires the maximum frequency of 500Hz using 20Khz ISR
loop. Then the step value to generate 500Hz is determined using equation (3)

4.1638
20000

65536500
=

×
=step

This step value of 1638 is used to initialize the “step_max” element of the signal generator
module. The normalized control variable “freq” helps to control the frequency from 0 to 500Hz
by varying it between 0 to 1 (Q15 format) with the frequency resolution of 0.305Hz

The frequency resolution is =
max_step

FMAX , hence the “step_max” should be high to get good

frequency resolution. It should be set to at least “100” for reasonable frequency resolution.

To generate SIN signal of frequency f , initialize the “freq” element of the SIN generator

module to 152×
MAXf

f
. Thus the required frequency is normalized with respect to the

maximum frequency as set by “step_max” and input as Q15 number to the SIN generator
module.

Texas Instruments Inc., May 2002 46

Texas Instruments Inc., May 2002 47

Description This module generates dual, 3-phase digital SIN signal with fixed 120°

phase shift between the channels and phase control between the two
three phase signals using table look-up and linear interpolation
technique.

Availability C-Callable Assembly (CcA)

Module Properties Type: Target Independent, Application Dependent

 Target Devices: x28xx

C-Callable Assembly Files: sgti3dc.asm, sintb360.asm, sgen.h

Item C-Callable ASM Comments

Code Sizeÿ 128 words + 257
+ cinit•

257 Look-up Table entries

Data RAM 0 words •

xDAIS ready Yes
 xDAIS component No IALG layer not implemented
 Multiple instances Yes
 Reentrancy Yes

Multiple Invocation

Yes

Stack usage 2 words Stack grows by 2 words

 • Each pre-initialized SGENTI_3D structure consumes 14 words in the
data memory and 17 words in the cinit section
∆∆ Each instance of SGENTI_3D module consumes 14 words in Data
memory.

Dual, three Phase SIN Generator (Table look-up and interpolation)SGENTI_3D

SGENTI_3D

freq

gain

offset

step_max

phase

out11

out13

out12

out21

out23

out22

Texas Instruments Inc., May 2002 48

C/C-Callable ASM Interface

C/C-Callable ASM Interface

Object Definition

The structure of SGENTI_3D object is defined by the following structure definition

typedef struct {
 unsigned int freq;
 unsigned int step_max;
 unsigned int alpha;
 int gain;
 int offset;
 int out11;
 int out12;
 int out13;
 unsigned int phase;
 int out21;
 int out22;
 int out23;
 void (*calc)(void *);
} SGENTI_3D;

Module Terminal Variables/Functions

Item Name Description Format Range

(Hex)

freq Frequency in hertz between []MAXF,0

normalized to []1,0

Q15 0-7FFF

offset DC offset in the SIN signal Q15 8000-7FFF

gain Gain of the SIN signal Q15 0-7FFF

Input

step_max

65536
max_ S

MAX

Fstep
F

×
= .

The default value is set to 1000 to generate
the maximum frequency of 305.17Hz using
20KHz sampling loop.

Q0 0000-7FFF

out11 SIN Output 11 à ()θsin Q15 8000-7FFF

out12 SIN Output 12 à ()o120sin +θ Q15 8000-7FFF

out13 SIN Output 13 à ()o240sin +θ Q15 8000-7FFF

out21 SIN Output 21 à ()phase+θsin Q15 8000-7FFF

out22 SIN Output 22 à ()phase++ o120sin θ Q15 8000-7FFF

Output

out23 SIN Output 23 à ()phase++ o240sin θ Q15 8000-7FFF

Texas Instruments Inc., May 2002 49

C/C-Callable ASM Interface

Special Constants and Data types

 SGENTI_3D

The module definition is created as a data type. This makes it convenient to instance an
interface to the signal generator module. To create multiple instances of the module
simply declare variables of type SGENTI_3D

SGENTI_3D_handle
User defined Data type of pointer to SGENTI_3D Module

 SGENTI_3_DEFAULTS

Structure symbolic constant to Initialize SGENTI_3D Module. This provides the initial
values to the terminal variables as well as method pointers.

Methods
 void (*calc)(void *);

This function implements two, 3-phase digital SIN signal generation with phase control
between the three phase signals using table look-up and linear interpolation technique.

Module Usage

Instantiation
 The following example instances empty generic signal generator object
 SGENTI_3D sgen;

 Initialization

To Instance pre-initialized object
SGENTI_3D sgen = SGENTI_3D_DEFAULTS;

Invoking the computation function
sgen.calc(&sgen);

Texas Instruments Inc., May 2002 50

C/C-Callable ASM Interface

Example
The following pseudo code exemplifies, dual 3-phase digital SIN signal (50Hz) generation with
90deg phase shift between the three phase signals using SGENTI_3D module.

#include <sgen.h>

SGENTI_3D sgen=SGENTI_3D_DEFAULTS;

 Int x11, x12, x13, x21, x22, x23;

main ()
{

sgen.offset=0;
 sgen.gain=0x7fff; /* gain = 1 in Q15 */
 sgen.freq=5369; /* freq = (Required Freq/Max Freq)*2^15 */
 /* = (50/305.17)*2^15 = 5369 */
 sgen.step_max=1000; /* Max Freq= (step_max * sampling freq)/65536 */
 /* Max Freq = (1000*20k)/65536 = 305.17 */

 sgen.phase=4000h /* Phase = (required Phase)/180 in Q15 */
 /* = (+90/180) in Q15 = 4000h */

}

void interrupt isr_20khz()
{

sgen.calc(&sgen);
 x11=sgen.out11;
 x12=sgen.out12;

 x13=sgen.out13;
x21=sgen.out21;

 x22=sgen.out22;
 x23=sgen.out23;

}

Note: Edit Linker Command file, to place the look-up table in Program memory.

SINTBL > PROG PAGE 0

Texas Instruments Inc., May 2002 51

Background Information

Background Information

The signal generator modules are implemented using modulo arithmetic counter (i.e. Any
overflow is ignored and only the remainder is kept) to precisely control the frequency. The
frequency of the generated signal is reciprocal of the time it takes for successive overflow of
modulo counter, which in turn commensurate with the step value added to the counter. Thus
by changing the step value, one can precisely control the frequency.

The step value is not directly commanded to vary the frequency, instead the modulation of
frequency is performed using the normalized variable “freq” which is normalized to the
maximum frequency. The maximum required frequency is predetermined based on the
application requirement and it set by initializing the “step_max” input. Thus, the normalized
variable “freq” allows the user to control the frequency of the signal between 0 to maximum
frequency.

The low THD sin generators are implemented using Table look-up and linear interpolation
technique and it uses 16-bit modulo counter. The upper byte (8-bits) is used to index the 256-
point look-up table and lower byte (8-bits) used to interpolate between the look-up table
entries.

()1
12
12

1 xx
xx

yy
yy −×

−
−

+= (1)

The amount of time it takes for the 16-bit modulo counter to overflow, assuming that the
counter is incremented in ISR.

ISRISR T
step

T
step

T ×=×=
65536216

 (2)

 The frequency of the generated SIN wave is reciprocal of the time, hence

 ISRF
step

F ×=
65536

 (3)

 Where
ISR

ISR
T

F
1

= is the ISR invocation frequency.

Thus the actual frequency of the SIN wave is determined by the “step” value used to
increment the modulo-counter and the ISR execution rate.

The signal generator modules use the normalized control variable to modulate the
frequency instead of directly commanding the step value. The frequency control variable
is normalized with respect to the maximum frequency.

1x 2x

1y

2y

x

Texas Instruments Inc., May 2002 52

Background Information

Assuming that the application requires the maximum frequency of 500Hz using 20Khz ISR
loop. Then the step value to generate 500Hz is determined using equation (3)

4.1638
20000

65536500
=

×
=step

This step value of 1638 is used to initialize the “step_max” element of the signal generator
module. The normalized control variable “freq” helps to control the frequency from 0 to 500Hz
by varying it between 0 to 1 (Q15 format) with the frequency resolution of 0.305Hz

The frequency resolution is =
max_step

FMAX , hence the “step_max” should be high to get good

frequency resolution. It should be set to at least “100” for reasonable frequency resolution.

To generate SIN signal of frequency f , initialize the “freq” element of the SIN generator

module to 152×
MAXf

f
. Thus the required frequency is normalized with respect to the

maximum frequency as set by “step_max” and input as Q15 number to the SIN generator
module.

Texas Instruments Inc., May 2002 53

Description This module generates single channel digital SIN signal using table look-

up and linear interpolation technique and it uses 32-bit integration
counter for high precision SIN generation.

Availability C-Callable Assembly (CcA)

Module Properties Type: Target Independent, Application Dependent

 Target Devices: x28xx

C-Callable Assembly files: sghp1c.asm, sintb360.asm, sgen.h

Item C-Callable ASM Comments

Code Sizeÿ 34 words + 257 +
cinit•

257 Look-up Table entries

Data RAM 0 words •

xDAIS ready Yes
 xDAIS component No IALG layer not implemented
 Multiple instances Yes
 Reentrancy Yes

Multiple Invocation

Yes

Stack usage 2 words Stack grows by 2 words

 • Each pre-initialized SGENHP_1 structure consumes 12 words in the
data memory and 15 words in the cinit section
∆∆ Each instance of SGENHP_1 module consumes 12 words in Data
memory.

Single Channel SIN Generator (High precision)SGENHP_1

out

freq

SGENHP_1

gain

offset

step_max

Texas Instruments Inc., May 2002 54

C/C-Callable ASM Interface

C/C-Callable ASM Interface

Object Definition

The structure of SGENHP_1 object is defined by the following structure definition

typedef struct {
 void (*calc)(void *);
 unsigned long int freq;
 unsigned long int step_max;
 unsigned long int alpha;
 int gain;
 int offset;
 int out;
} SGENHP_1;

Module Terminal Variables/Functions

Item Name Description Format Range(Hex)

freq Frequency in hertz between []MAXF,0

normalized to []1,0

Q31 0-7FFFFFFF

offset DC offset in the SIN signal Q15 8000-7FFF

gain Gain of the SIN signal Q15 0-7FFF

Input

step_max

322

max_ S
MAX

Fstep
F

×
= .

The default value is set to 1000 to
generate the maximum frequency of
305.17Hz using 20KHz sampling loop.

Q0 0-7FFFFFFF

Output out SIN Output Q15 8000-7FFF

Special Constants and Data types

 SGENHP_1

The module definition is created as a data type. This makes it convenient to instance an
interface to the signal generator module. To create multiple instances of the module
simply declare variables of type SGENHP_1

SGENHP_1_handle
User defined Data type of pointer to SGENHP_1 Module

 SGENHP_1_DEFAULTS

Structure symbolic constant to Initialize SGENHP_1 Module. This provides the initial
values to the terminal variables as well as method pointers.

Methods
 void (*calc)(void *);

This function implement the single channel digital SIN signal generation using table look-
up and linear interpolation technique and it uses 32-bit integrator to generate high
precision SIN signal.

Texas Instruments Inc., May 2002 55

C/C-Callable ASM Interface

Module Usage

Instantiation
 The following example instances empty signal generator object
 SGENHP_1 sgen;

 Initialization

To Instance pre-initialized object
SGENHP_1 sgen = SGENHP_1_DEFAULTS;

Invoking the computation function
sgen.calc(&sgen);

Example

The following pseudo code exemplifies, 50Hz single channel digital SIN signal generation
using SGENHP_1 module.

#include <sgen.h>

SGENHP_1 sgen=SGENHP_1_DEFAULTS;

 int x1;
main ()
{

sgen.offset=0;
 sgen.gain=0x7fff; /* gain=1 in Q15 */
 sgen.freq=0x14F8CF92; /* freq = (Required Freq/Max Freq)*2^31 */
 /* = (50/305.17)*2^31 = 0x14f8cf92 */
 sgen.step_max=0x3E7FB26; /* Max Freq= (step_max * sampling freq)/2^32 */
 /* =(0x3E7FB26*20k)/2^32 = 305.17 */
}

void interrupt isr_20khz()
{

sgen.calc(&sgen);
 x1=sgen.out;

}

Note: Edit Linker Command file, to place the look-up table in Program memory.

SINTBL > PROG PAGE 0

Texas Instruments Inc., May 2002 56

Background Information

Background Information

The signal generator modules are implemented using modulo arithmetic counter (i.e. Any
overflow is ignored and only the remainder is kept) to precisely control the frequency. The
frequency of the generated signal is reciprocal of the time it takes for successive overflow of
modulo counter, which in turn commensurate with the step value added to the counter. Thus
by changing the step value, one can precisely control the frequency.

The step value is not directly commanded to vary the frequency, instead the modulation of
frequency is performed using the normalized variable “freq” which is normalized to the
maximum frequency. The maximum required frequency is predetermined based on the
application requirement and it set by initializing the “step_max” input. Thus, the normalized
variable “freq” allows the user to control the frequency of the signal between 0 to maximum
frequency.

The high precision sin generators are implemented using Table look-up and linear
interpolation technique and it uses 32-bit modulo counter. The upper byte (8-bits) is used to
index the 256-point look-up table and the 15-bits following the upper byte are used to
interpolate between the look-up table entries.

 ()1
12
12

1 xx
xx

yy
yy −×

−
−

+= (1)

The amount of time it takes for the 32-bit modulo counter to overflow, assuming that the
counter is incremented in ISR.

 ISRT
step

T ×=
322

 (2)

 The frequency of the generated SIN wave is reciprocal of the time, hence

 ISRF
step

F ×=
322

 (3)

 Where
ISR

ISR
T

F
1

= is the ISR invocation frequency.

Thus the actual frequency of the SIN wave is determined by the “step” value used to
increment the modulo-counter and the ISR execution rate.

The signal generator modules use the normalized control variable to modulate the frequency
instead of directly commanding the step value. The frequency control variable is normalized
with respect to the maximum frequency.

1x 2x

1y

2y

x

Texas Instruments Inc., May 2002 57

Background Information

Assuming that the application requires the maximum frequency of 500Hz using 20Khz ISR
loop. Then the step value to generate 500Hz is determined using equation (3)

 4.107374182
20000

2500 32

=
×

=step

This step value of 107374182 is used to initialize the “step_max” element of the signal
generator module. The normalized control variable “freq” helps to control the frequency from
0 to 500Hz by varying it between 0 to 1 (Q15 format) with the frequency resolution given by
equation (4)

The frequency resolution is =
max_step

FMAX (4)

Hence the “step_max” should be high to get good frequency resolution. It should be set to at
least “100” for reasonable frequency resolution.
To generate SIN signal of frequency f , initialize the “freq” element of the SIN generator

module to 312×
MAXf

f
. Thus the required frequency is normalized with respect to the

maximum frequency as set by “step_max” and input as Q31 number to the SIN generator
module.

Since the frequency control variable is represented in Q31 format, we can precisely
generate the required frequency.

Texas Instruments Inc., May 2002 58

Texas Instruments Inc., May 2002 59

Description This module generates single channel digital SIN signal using table look-

up and linear interpolation technique with phase control and it uses 32-bit
integration counter for high precision SIN generation.

Availability C-Callable Assembly (CcA)

Module Properties Type: Target Independent, Application Dependent

 Target Devices: x28xx

C-Callable Assembly files: sghp2c.asm, sintb360.asm, sgen.h

Item C-Callable ASM Comments

Code Sizeÿ 57 words + 257 +
cinit•

257 Look-up Table entries

Data RAM 0 words •

xDAIS ready Yes
 xDAIS component No IALG layer not implemented
 Multiple instances Yes
 Reentrancy Yes

Multiple Invocation

Yes

Stack usage 2 words Stack grows by 2 words

 • Each pre-initialized SGENHP_2 structure consumes 14 words in the
data memory and 17 words in the cinit section
∆∆ Each instance of SGENHP_2 module consumes 14 words in Data
memory.

Dual Channel SIN Generator (High precision)SGENHP_2

out1

SGENHP_2

freq

gain

offset

step_max

phase

out2

Texas Instruments Inc., May 2002 60

C/C-Callable ASM Interface

C/C-Callable ASM Interface

Object Definition

The structure of SGENHP_2 object is defined by the following structure definition

typedef struct {
 unsigned long int freq;
 unsigned long int step_max;
 unsigned long int alpha;
 int gain;
 int offset;
 int out1;
 int out2;
 unsigned long int phase;
 void (*calc)(void *);
} SGENHP_2;

Module Terminal Variables/Functions

Item Name Description Format Range(Hex)

freq Frequency in hertz between []MAXF,0

normalized to []1,0

Q31 0-7FFFFFFF

offset DC offset in the SIN signal Q15 8000-7FFF

gain Gain of the SIN signal Q15 0-7FFF

phase Phase angle between the two SIN outputs
[]ππ +− , is normalized to []1,1+−

Q15 8000-7FFF

Input

step_max

322

max_ S
MAX

Fstep
F

×
= .

The default value is set to 1000 to
generate the maximum frequency of
305.17Hz using 20KHz sampling loop.

Q0 0-7FFFFFFF

out1 SIN Output 1 à ()θsin Q15 8000-7FFF Output

out2 SIN Output 2 à ()phase+θsin Q15 8000-7FFF

Special Constants and Data types

 SGENHP_2

The module definition is created as a data type. This makes it convenient to instance an
interface to the signal generator module. To create multiple instances of the module
simply declare variables of type SGENHP_2

SGENHP_2_handle
User defined Data type of pointer to SGENHP_2 Module

 SGENHP_2_DEFAULTS

Structure symbolic constant to Initialize SGENHP_2 Module. This provides the initial
values to the terminal variables as well as method pointers.

Texas Instruments Inc., May 2002 61

C/C-Callable ASM Interface

Methods
 void (*calc)(void *);

This function implements the dual channel digital SIN signal generation using table look-
up and linear interpolation technique with phase control and it uses 32-bit integrator to
generate high precision SIN signal.

Module Usage

Instantiation
 The following example instances empty signal generator object
 SGENHP_2 sgen;

 Initialization

To Instance pre-initialized object
SGENHP_2 sgen = SGENHP_2_DEFAULTS;

Invoking the computation function
sgen.calc(&sgen);

Example

The following pseudo code exemplifies, two 50Hz digital SIN signal generation with
90deg phase shift using SGENHP_2 module.

#include <sgen.h>

SGENHP_2 sgen=SGENHP_2_DEFAULTS;

 int x1, x2;

main()
{

sgen.offset=0;
 sgen.gain=0x7fff; /* gain=1 in Q15 */
 sgen.freq=0x14F8CF92; /* freq = (Required Freq/Max Freq)*2^31 */
 /* = (50/305.17)*2^31 = 0x14f8cf92 */
 sgen.step_max=0x3E7FB26; /* Max Freq= (step_max * sampling freq)/2^32 */
 /* =(0x3E7FB26*20k)/2^32 = 305.17 */

sgen.phase=0x40000000; /* Phase= (required Phase)/180 in Q31 */
 /* = (+90/180) in Q31 = 40000000h */
}

void interrupt isr_20khz()
{

sgen.calc(&sgen);
 x1=sgen.out1;
 x2=sgen.out2;

}

Note: Edit Linker Command file, to place the look-up table in Program memory.

SINTBL > PROG PAGE 0

Texas Instruments Inc., May 2002 62

Background Information

Background Information

The signal generator modules are implemented using modulo arithmetic counter (i.e. Any
overflow is ignored and only the remainder is kept) to precisely control the frequency. The
frequency of the generated signal is reciprocal of the time it takes for successive overflow of
modulo counter, which in turn commensurate with the step value added to the counter. Thus
by changing the step value, one can precisely control the frequency.

The step value is not directly commanded to vary the frequency, instead the modulation of
frequency is performed using the normalized variable “freq” which is normalized to the
maximum frequency. The maximum required frequency is predetermined based on the
application requirement and it set by initializing the “step_max” input. Thus, the normalized
variable “freq” allows the user to control the frequency of the signal between 0 to maximum
frequency.

The high precision sin generators are implemented using Table look-up and linear
interpolation technique and it uses 32-bit modulo counter. The upper byte (8-bits) is used to
index the 256-point look-up table and the 15-bits following the upper byte are used to
interpolate between the look-up table entries.

 ()1
12
12

1 xx
xx

yy
yy −×

−
−

+= (1)

The amount of time it takes for the 32-bit modulo counter to overflow, assuming that the
counter is incremented in ISR.

 ISRT
step

T ×=
322

 (2)

 The frequency of the generated SIN wave is reciprocal of the time, hence

 ISRF
step

F ×=
322

 (3)

 Where
ISR

ISR
T

F
1

= is the ISR invocation frequency.

Thus the actual frequency of the SIN wave is determined by the “step” value used to
increment the modulo-counter and the ISR execution rate.

The signal generator modules use the normalized control variable to modulate the frequency
instead of directly commanding the step value. The frequency control variable is normalized
with respect to the maximum frequency.

1x 2x

1y

2y

x

Texas Instruments Inc., May 2002 63

Background Information

Assuming that the application requires the maximum frequency of 500Hz using 20Khz ISR
loop. Then the step value to generate 500Hz is determined using equation (3)

 4.107374182
20000

2500 32

=
×

=step

This step value of 107374182 is used to initialize the “step_max” element of the signal
generator module. The normalized control variable “freq” helps to control the frequency from
0 to 500Hz by varying it between 0 to 1 (Q15 format) with the frequency resolution given by
equation (4)

The frequency resolution is =
max_step

FMAX (4)

Hence the “step_max” should be high to get good frequency resolution. It should be set to at
least “100” for reasonable frequency resolution.

To generate SIN signal of frequency f , initialize the “freq” element of the SIN generator

module to 312×
MAXf

f
. Thus the required frequency is normalized with respect to the

maximum frequency as set by “step_max” and input as Q31 number to the SIN generator
module.

Since the frequency control variable is represented in Q31 format, we can precisely
generate the required frequency.

Texas Instruments Inc., May 2002 64

Texas Instruments Inc., May 2002 65

Description This module generates ramp output (Positive or Negative ramp) of

adjustable gain, frequency and DC offset.

Availability C-Callable Assembly (CcA)

Module Properties Type: Target Independent, Application Dependent

 Target Devices: x28xx

C-Callable Assembly Files: rampgc.asm, sgen.h

Item C-Callable ASM Comments

Code Sizeÿ 12 words + cinit•
Data RAM 0 words •

xDAIS ready Yes
 xDAIS component No IALG layer not implemented
 Multiple instances Yes
 Reentrancy Yes

Multiple Invocation

Yes

Stack usage 2 words Stack grows by 2 words

 • Each pre-initialized RMPGEN structure consumes 8 words in the data
memory and 11 words in the cinit section
∆∆ Each instance of RMPGEN module consumes 8 words in Data
memory.

Ramp GeneratorRMPGEN

out

freq

RMPGEN

gain

offset

step_max

Texas Instruments Inc., May 2002 66

C/C-Callable ASM Interface

C/C-Callable ASM Interface

Object Definition

The structure of RMPGEN object is defined by the following structure definition

typedef struct {
 int freq;
 unsigned int step_max;
 unsigned int alpha;
 int gain;
 int offset;
 int out;
 void (*calc)(void *);
} RMPGEN;

Module Terminal Variables/ Functions

Item Name Description Format Range(Hex)

freq Frequency in hertz between

[]MAXMAX FF ,− normalized to []1,1− .
The positive frequency input generates
ramp up (+ve Ramp) and negative
frequency input generates ramp down
output (-ve Ramp)

Q15 8000-7FFF

offset DC offset in the ramp signal Q15 8000-7FFF

gain Gain of the ramp signal Q15 0-7FFF

Input

step_max

65536
max_ S

MAX

Fstep
F

×
= .

The default value is set to 1000 to
generate the maximum frequency of
305.17Hz using 20KHz sampling loop.

Q0 0000-7FFF

Output out SIN Output Q15 8000-7FFF

Special Constants and Data types

 RMPGEN

The module definition is created as a data type. This makes it convenient to instance an
interface to the signal generator module. To create multiple instances of the module
simply declare variables of type RMPGEN.

RMPGEN_handle
User defined Data type of pointer to RMPGEN Module

 SGENTI_1_DEFAULTS

Structure symbolic constant to Initialize RMPGEN Module. This provides the initial values
to the terminal variables as well as method pointers.

Methods
 void (*calc)(void *);

This function generates ramp output with adjustable gain, frequency and DC offset.

Texas Instruments Inc., May 2002 67

C/C-Callable ASM Interface

Module Usage

Instantiation
 The following example instances empty signal generator object
 RMPGEN sgen;

 Initialization

To Instance pre-initialized object
RMPGEN sgen = RMPGEN_DEFAULTS;

Invoking the computation function
sgen.calc(&sgen);

Example

The following pseudo code exemplifies, 50Hz negative ramp signal generation using
RMPGEN module.

#include <sgen.h>

RMPGEN sgen=RMPGEN_DEFAULTS;

 int x1;
main ()
{

sgen.offset=0;
 sgen.gain=0x7fff; /* gain=1 in Q15 */
 sgen.freq=-5369; /* freq = (Required Freq/Max Freq)*2^15 */
 /* = (50/305.17)*2^15 = 5369 */

/* Negate freq input for –ve ramp */

sgen.step_max=1000; /* Max Freq= (step_max * sampling freq)/65536 */
 /* Max Freq = (1000*20k)/65536 = 305.17 */

}

void interrupt isr_20khz()
{

sgen.calc(&sgen);
 x1=sgen.out;

}

Texas Instruments Inc., May 2002 68

Background Information

Background Information

The signal generator modules are implemented using modulo arithmetic counter (i.e. Any
overflow is ignored and only the remainder is kept) to precisely control the frequency. The
frequency of the generated signal is reciprocal of the time it takes for successive overflow of
modulo counter, which in turn commensurate with the step value added to the counter. Thus
by changing the step value, one can precisely control the frequency.

The step value is not directly commanded to vary the frequency, instead the modulation of
frequency is performed using the normalized variable “freq” which is normalized to the
maximum frequency. The maximum required frequency is predetermined based on the
application requirement and it set by initializing the “step_max” input. Thus, the normalized
variable “freq” allows the user to control the frequency of the signal between 0 to maximum
frequency.

The amount of time it takes for the 16-bit modulo counter to overflow, assuming that the
counter is incremented in ISR.

ISRISR T
step

T
step

T ×=×=
65536216

 (1)

 The frequency of the generated ramp signal is reciprocal of the time, hence

 ISRF
step

F ×=
65536

 (2)

 Where
ISR

ISR
T

F
1

= is the ISR invocation frequency.

Thus the actual frequency of the ramp is determined by the “step” value used to increment
the modulo-counter and the ISR execution rate. The signal generator modules use the
normalized control variable to modulate the frequency instead of directly commanding the
step value. The frequency control variable is normalized with respect to the maximum
frequency.

Assuming that the application requires the maximum frequency of 500Hz using 20Khz ISR
loop. Then the step value to generate 500Hz is determined using equation (2)

4.1638
20000

65536500
=

×
=step

This step value of 1638 is used to initialize the “step_max” element of the signal generator
module. The normalized control variable “freq” helps to control the frequency from 0 to 500Hz
by varying it between 0 to 1 (Q15 format) with the frequency resolution of 0.305Hz

The frequency resolution is =
max_step

FMAX , hence the “step_max” should be high to get good

frequency resolution. It should be set to at least “100” for reasonable frequency resolution.

Texas Instruments Inc., May 2002 69

Background Information

To generate RAMP signal of frequency f , initialize the “freq” element of the ramp generator

module to 152×
MAXf

f
. Thus the required frequency is normalized with respect to the

maximum frequency as set by “step_max” and input as Q15 number to the ramp generator
module. The negative frequency input generates negative ramp output.

Positive Ramp Output:

Negative Ramp Output:

offset

gain

T

0

gain

offset

T

0

Texas Instruments Inc., May 2002 70

Texas Instruments Inc., May 2002 71

Description This module generates trapezoidal output of adjustable gain, frequency

and DC offset. Input pre-scalar is provided to generate very low
frequency output.

Availability C-Callable Assembly (CcA)

Module Properties Type: Target Independent, Application Dependent

 Target Devices: x28xx

C-Callable Assembly Files: tzdlgc.asm, sgen.h

Item C-Callable ASM Comments

Code Sizeÿ 89 words + cinit•
Data RAM 0 words •

xDAIS ready Yes
 xDAIS component No IALG layer not implemented
 Multiple instances Yes
 Reentrancy Yes

Multiple Invocation

Yes

Stack usage 2 words Stack grows by 2 words

 • Each pre-initialized TZDLGEN structure consumes 14 words in the
data memory and 17 words in the cinit section
∆∆ Each instance of TZDLGEN module consumes 14 words in Data
memory.

Trapezoidal GeneratorTZDLGEN

out

TZDLGEN

gain

offset

step_max

prescalar

Texas Instruments Inc., May 2002 72

C/C-Callable ASM Interface

C/C-Callable ASM Interface

Object Definition

The structure of TZDLGEN object is defined by the following structure definition

typedef struct {
 unsigned int skip_cntr;
 unsigned int prescalar;

unsigned int freq;
 unsigned int step_max;
 unsigned int task;
 unsigned int alpha;
 int gain;
 int offset;
 int out;
 void (*init)(void *);
 void (*calc)(void *);
} TZDLGEN;

Module Terminal Variables/Functions

Item Name Description Format Range(Hex)

freq Frequency in hertz between []MAXF,0

normalized to []1,0

Q15 0000-7FFF

offset DC offset in the trapezoidal signal Q15 8000-7FFF

gain Gain of the trapezoidal signal Q15 0-7FFF

prescalar Prescalar for modulo counter, used to
generate very low frequency.

Q0 0-7FFF

Input

step_max

prescalar

Fstep
F S

MAX ××
×

=
655364

max_
.

The default value is set to 4000 to
generate the maximum frequency of
305.17Hz using 20KHz sampling loop
and unity prescalar.

Q0 0000-7FFF

Output out Trapezoidal Output Q15 8000-7FFF

Special Constants and Data types

 TZDLGEN

The module definition is created as a data type. This makes it convenient to instance an
interface to the signal generator module. To create multiple instances of the module
simply declare variables of type TZDLGEN.

TZDLGEN_handle
User defined Data type of pointer to TZDLGEN module

 TZDLGEN_DEFAULTS

Structure symbolic constant to Initialize TZDLGEN Module. This provides the initial
values to the terminal variables as well as method pointers.

Texas Instruments Inc., May 2002 73

C/C-Callable ASM Interface

Methods
 void (*init)(void *);

This function initializes the trapezoidal module.

void (*calc)(void *);
This function generates trapezoidal output with adjustable gain, frequency and DC offset.

Module Usage

Instantiation
 The following example instances empty signal generator object
 TZDLGEN sgen;

 Initialization

To Instance pre-initialized object
TZDLGEN sgen = TZDLGEN_DEFAULTS;

Invoking the computation function
sgen.calc(&sgen);

Example

The following pseudo code exemplifies, 50Hz trapezoidal signal generation, using
TZDLGEN module.

#include <sgen.h>

TZDLGEN sgen=TZDLGEN_DEFAULTS;

 int x1;
main ()
{

sgen.prescalar=1;
 sgen.freq=5369; /* freq = (Required Freq/Max Freq)*2^15 */
 /* = (50/305.17)*2^15 = 5369 */
 sgen.step_max=4000; /* Max Freq= (step_max*Fs)/(4*65536*prescalar) */

/* Max Freq = (4000*20k)/(4*65536*1) = 305.17 */
 sgen.gain=0x7fff; /* ~1 in Q15 format */
 sgen.offset=0;
 sgen.init(&tgen);
 }

void interrupt isr_20khz()
{

sgen.calc(&sgen);
 x1=sgen.out;

}

Texas Instruments Inc., May 2002 74

Background Information

Background Information

The trapezoidal module is implemented using modulo arithmetic counter (i.e. Any overflow is
ignored and only the remainder is kept) to precisely control the frequency. The trapezoidal
signal consists of four states viz., MIN, RAMP UP, MAX and RAMP DOWN. The module is
initialized to “MIN” state by the initialization routine and state switching is performed during
the overflow of the modulo counter. Hence, the modulo counter overflows four times to
complete one cycle of trapezoidal output. As a result the frequency of the generated signal is
reciprocal of the time it takes for 4 overflows of modulo counter, which in turn commensurate
with the step value added to the counter. Thus by changing the step value, one can precisely
control the frequency.

The step value is not directly commanded to vary the frequency, instead the modulation of
frequency is performed using the normalized variable “freq” which is normalized to the
maximum frequency. The maximum required frequency is predetermined based on the
application requirement and it set by initializing the “step_max” input. Thus, the normalized
variable “freq” allows the user to control the frequency of the signal between 0 to maximum
frequency.

The modular counter have software prescalar to reduce the increment rate in order to
generate very low frequency trapezoidal signal. The prescalar essentially increases the time
to overflow, thereby reducing the frequency. The amount of time it takes for the 16-bit modulo
counter to overflow 4 times, for a given prescalar is given by

ISRISR T
step

prescalar
T

step

prescalar
T ×

××
=×

××
=

65536424 16

 (1)

 The frequency of the generated trapezoidal signal is reciprocal of the time, hence

 ISRF
prescalar

step
F ×

××
=

655364
 (2)

 Where
ISR

ISR
T

F
1

= is the ISR invocation frequency.

Min

Max

0

FFFFh

Modulo
Counter

Trapezoidal
Output

Ramp up Ramp down

T

Texas Instruments Inc., May 2002 75

Background Information

Thus, the actual frequency of the trapezoidal signal is determined by the incremental step
value, prescalar and ISR execution rate. The signal generator modules use the normalized
control variable to modulate the frequency instead of directly commanding the step value.
The frequency control variable is normalized with respect to the maximum frequency.

Assuming that the application requires the maximum frequency of 500Hz using 20Khz ISR
loop and unity prescalar. Then the step value to generate 500Hz is determined using
equation (2)

6.6553
20000

1655364500
=

×××
=step

This step value of 6553 is used to initialize the “step_max” element of the signal generator
module. The normalized control variable “freq” helps to control the frequency from 0 to 500Hz
by varying it between 0 to 1 (Q15 format) with the frequency resolution of 76.3mHz

The frequency resolution is =
max_step

FMAX , hence the “step_max” should be high to get good

frequency resolution. It should be set to at least “100” for reasonable frequency resolution.

To generate trapezoidal signal of frequency f , initialize the “freq” element of the ramp

generator module to 152×
MAXf

f
. Thus the required frequency is normalized with respect to

the maximum frequency as set by “step_max” and input as Q15 number to the trapezoidal
generator module.

Prescalar:
From equation (2), the minimum frequency is generated for unity prescalar, if the step
increment is “1”.

=
×

=×
××

=
655364

20000
1655364

1
ISRMIN FF 76mHz

Hence, the minimum frequency is 76mHz or 13.1sec time period for 20Khz ISR.

If the pre-scalar value is set to 2, then the minimum frequency is 38mHz or 26.2sec time
period for 20K ISR.

=
××

=×
××

=
2655364

20000
2655364

1
ISRMIN FF 38mHz

Thus, the pre-scalar is essentially used to generate very low frequency signal by increasing
the value.

Texas Instruments Inc., May 2002 76

Texas Instruments Inc., May 2002 77

Description This module generates profiling signal of adjustable gain, frequency and

DC offset. It can generate continuos or triggered single shot output. Input
pre-scalar is provided to generate very low frequency.

Availability C-Callable Assembly (CcA)

Module Properties Type: Target Independent, Application Dependent

 Target Devices: x28xx

C-Callable Assembly Files: profilec.asm, sgen.h

Item C-Callable ASM Comments

Code Sizeÿ 156 words +
cinit•

Data RAM 0 words •

XDAIS ready Yes
 XDAIS component No IALG layer not implemented
 Multiple instances Yes
 Reentrancy Yes

Multiple Invocation

Yes

Stack usage 2 words Stack grows by 2 words

 • Each pre-initialized PROFILE structure consumes 20 words in the data
memory and 23 words in the cinit section
∆∆ Each instance of PROFILE module consumes 20 words in Data
memory.

Profiling Signal GeneratorPROFILE

out

PROFILE

gain

offset

step_max

prescalar

trig

t_rmpup

t_max

mode

t_rmpdn

t_max

Texas Instruments Inc., May 2002 78

C/C-Callable ASM Interface

C/C-Callable ASM Interface

Object Definition

The structure of PROFILE object is defined by the following structure definition
typedef struct {
 int mode;
 int trig;

unsigned int skip_cntr;
 unsigned int prescalar;

unsigned int freq;
 unsigned int step_max;
 int t_rmpup;
 int t_max;
 int t_rmpdn;
 int t_min;

unsigned int task;
 unsigned int alpha;
 int gain;
 int offset;
 int out;
 void (*init)(void *);
 void (*calc)(void *);
} PROFILE;

Module Terminal Variables/Functions

Item Name Description Format Range(Hex)
mode 1: Continuous Signal generation

0: Single Shot operation
Binary 0 or 1

trig Trigger input for single shot operation Binary 0 or 1
prescalar Prescalar for modulo counter, used to

generate very low frequency.
Q0 0-7FFF

freq Frequency in hertz between []MAXF,0

normalized to []1,0

Q15 0000-7FFF

step_max

prescalar

Fstep
F S

MAX ××
×

=
655364

max_
.

The default value is set to 4000 to generate
the maximum frequency of 305.17Hz using
20KHz sampling loop and unity prescalar.

Q0 0000-7FFF

offset DC offset in the trapezoidal signal Q15 8000-7FFF
gain Gain of the trapezoidal signal Q15 0-7FFF
t_min Ratio of minimum state time with respect to

the time period (T) in Q8 format
Q8 0000-0100

t_rmpup Ratio of ramp up state time with respect to
the time period (T) in Q8 format

Q8 0000-0100

t_max Ratio of max state time with respect to the
time period (T) in Q8 format

Q8 0000-0100

Input

t_rmpdn Ratio of ramp down state time with respect
to the time period (T) in Q8 format

Q8 0000-0100

Output out Profile Output Q15 8000-7FFF

Texas Instruments Inc., May 2002 79

C/C-Callable ASM Interface

Methods
 void (*init)(void *);

This function initializes the profile module.

void (*calc)(void *);
This function generates profile signal of adjustable gain, frequency and DC offset. It
provides option for single shot or continuos signal generation.

Module Usage

Instantiation
 The following example instances empty signal generator object
 PROFILE sgen;

 Initialization

To Instance pre-initialized object
PROFILE sgen = PROFILE_DEFAULTS;

Invoking the computation function
sgen.calc(&sgen);

Example
The following pseudo code exemplifies 50Hz profile signal generation with the following
properties using PROFILE module (Assuming 20KHz sampling frequency).

1) Min State time: 10% of T. 2) Ramp up state time: 20% of T.
 3) Max state time: 30% of T. 4) Ramp down state time: 40% of T.

#include <sgen.h>

PROFILE sgen=PROFILE_DEFAULTS;

 int x1;
main ()
{

/* Signal Generator module initialization */
 sgen.mode=1; /* Set Mode bit for Continuous signal Generation */

 sgen.prescalar=1;
 sgen.freq=5369; /* freq = (Required Freq/Max Freq)*2^15 */
 /* = (50/305.17)*2^15 = 5369 */
 sgen.step_max=4000; /* Max Freq= (step_max * sampling freq)/(4*65536) */
 /* Max Freq = (4000*20k)/(4*65536) = 305.17 */
 sgen.gain=0x7fff; /* ~1 in Q15 format */
 sgen.offset=0;
 sgen.t_rmpup=51; /* 20% of T, 0.2 in Q8 */
 sgen.t_max=77; /* 30% of T, 0.3 in Q8 */
 sgen.t_rmpdn=102; /* 40% of T, 0.4 in Q8 */
 sgen.t_min=25; /* 10% of T, 0.1 in Q8 */
 sgen.init(&sgen);
 }

void interrupt isr_20khz()
{

sgen.calc(&sgen);
 x1=sgen.out;

}

Texas Instruments Inc., May 2002 80

Background Information

Background Information

The profile signal generator is implemented using modulo arithmetic counter (i.e. Any
overflow is ignored and only the remainder is kept) to precisely control the frequency. The
profile signal consists of four states viz., MIN, RAMP UP, MAX and RAMP DOWN. The
module is initialized to “MIN” state by the initialization routine and state switching is
performed during the overflow of the modulo counter. Hence, the modulo counter overflows
four times to complete one cycle of profile output. As a result the frequency of the generated
signal is reciprocal of the time it takes for 4 overflows of modulo counter, which in turn
commensurate with the step value added to the counter. Thus by changing the step value,
one can precisely control the frequency.

The step value is not directly commanded to vary the frequency, instead the modulation of
frequency is performed using the normalized variable “freq” which is normalized to the
maximum frequency. The maximum required frequency is predetermined based on the
application requirement and it set by initializing the “step_max” input. Thus, the normalized
variable “freq” allows the user to control the frequency of the signal between 0 to maximum
frequency.

The step value is calculated using the following equation
 max_stepfreqstep ×= (1)

 Where, 1:0=freq in Q15 format

Adding the same step value continuously to the modulo counter provides equal time period
(4

T or 25% of T) for each state of the profile viz., MIN, RAMP UP, MAX and RAMP DOWN
resulting in trapezoidal output as given below. Profile generator requires the traversal time for
each state modifiable. This is done by providing 4 parameters describing the MIN state time,
RAMP UP state time, MAX state time and RAMP DOWN state time. The time input for each
state is specified as the ratio with respect to the Profile time period (T) in Q8 format.

Min

Max

0

FFFFh

Modulo
Counter

Trapezoidal
Output

Ramp up Ramp down

T

MIN
State time

RAMP UP
State time

MAX
State time

RAMP DOWN
State time

Texas Instruments Inc., May 2002 81

Background Information

The modular counter have software pre-scalar to reduce the increment rate in order to
generate very low frequency trapezoidal signal. The pre-scalar essentially increases the time
to overflow, thereby reducing the frequency. The amount of time it takes for the 16-bit modulo
counter to overflow 4 times, for a given pre-scalar is given by

ISRISR T
step

prescalar
T

step

prescalar
T ×

××
=×

××
=

65536424 16

 (2)

 The frequency of the generated trapezoidal signal is reciprocal of the time, hence

 ISRF
prescalar

step
F ×

××
=

655364
 (3)

 Where
ISR

ISR
T

F
1

= is the ISR invocation frequency.

Thus, the actual frequency of the trapezoidal signal is determined by the incremental step
value, pre-scalar and ISR execution rate. The signal generator modules use the normalized
control variable to modulate the frequency instead of directly commanding the step value.
The frequency control variable is normalized with respect to the maximum frequency.

Assuming that the application requires the maximum frequency of 500Hz using 20Khz ISR
loop and unity pre-scalar. Then the step value to generate 500Hz is determined using
equation (3)

6.6553
20000

1655364500
=

×××
=step

This step value of 6553 is used to initialize the “step_max” element of the signal generator
module. The normalized control variable “freq” helps to control the frequency from 0 to 500Hz
by varying it between 0 to 1 (Q15 format) with the frequency resolution of 76.3mHz

The frequency resolution is =
max_step

FMAX , hence the “step_max” should be high to get good

frequency resolution. It should be set to at least “100” for reasonable frequency resolution.

To generate trapezoidal signal of frequency f , initialize the “freq” element of the trapezoidal

generator module to 152×
MAXf

f
. Thus the required frequency is normalized with respect to

the maximum frequency as set by “step_max” and input as Q15 number to the trapezoidal
generator module.

Texas Instruments Inc., May 2002 82

Background Information

Pre-scalar

From equation (2), the minimum frequency is generated for unity pre-scalar, if the step
increment is “1”.

=
×

=×
××

=
655364

20000
1655364

1
ISRMIN FF 76mHz

Hence, the minimum frequency is 76mHz or 13.1sec time period for 20Khz ISR.

If the pre-scalar value is set to 2, then the minimum frequency is 38mHz or 26.2sec time
period for 20K ISR.

=
××

=×
××

=
2655364

20000
2655364

1
ISRMIN FF 38mHz

Thus, the pre-scalar is essentially used to generate very low frequency signal by increasing
the value.

Time Specification

The state traversal time for MIN, RAMP_UP, MAX and RAMP DOWN are input to the module as
ratio with respect to the profile time period in Q8 format and it is given below. The sum of the time
parameter expressed as ratio with respect to the profile time period, must be unity. Otherwise the
generated frequency will be different from the one set by the “freq” input.

 t_min = 81 2×
T

T
 (4)

 t_rmpup= 82 2×
T

T
 (5)

 t_max = 83 2×
T

T
 (6)

 t_rmpdn= 84 2×
T

T
 (7)

T

T3=0.3T T1=0.2T

T4=0.4T T2=0.1T

Texas Instruments Inc., May 2002 83

Background Information

To generate the profile given in the last page, initialize the time parameters as given below,

 1) t_min= 512
2.0 8 =×
T

T
 2) t_rmpup= 262

1.0 8 =×
T

T

 3) t_max= 772
3.0 8 =×
T

T
 4) t_rmpdn= 1022

4.0 8 =×
T

T

The step value in equation (1), if added to modulo counter will provide (4

T or 25% of T) for each
state. To get the required traversal time for each state, the step value is scaled up/down before
adding to modulo counter. The step value is scaled up, if the state time parameter is less the 0.25
the scaled down if the state time parameter is greater then 0.25.

Actual step value added during ramp up phase is give by the following equation

 =
rmpupt

step

_
25.0×

 (8)

Similarly for the other state of the profile output, actual step values are calculated based on time
parameter and added to modulo counter.

Single shot & Continuous profile generation:
The profile generator operates in two modes viz., Single shot mode and Continuos mode. It is
selected by using “mode” element. Setting the “mode” element will generate continuous profile
output, resetting to “zero” will allow the module to work in single shot mode. In single shot mode,
the profile generator generates one cycle of profile, if “trig” element is set to “1”. Trigger element

e of profile output.

Wave Generation:
The profile generator can be used to generate ramp and triangular waveform by appropriately
initializing the state time parameters

Positive ramp generation:
 1) t_rmpup=256 (1 in Q8) 2) t_max=0,
 3) t_min=0 4) t_rmpdn=0

Negative ramp generation:
 1) t_rmpup=0 2) t_max=0,
 3) t_min=0 4) t_rmpdn=256 (1 in Q8)

Triangular wave generation:
 1) t_rmpup=128 (0.5 in Q8) 2) t_max=0,
 3) t_min=0 4) t_rmpdn=128 (0.5 in Q8)

trig

out

