STM32F401 - ST의 저렴한 Cortex-M4

[ST_MICRO]/STM32F4 | 2014/09/11 12:14
Posted by nexp

STM32F401 - ST의 저렴한 Cortex-M4

ST에서 저렴한 Cortex-M4코어를 출시 했다. 최대 84Mhz로 동작하고 저렴한 가격으로 FPU가 필요한 어플리케이션에 적용하도록 타겟하고 있다.


기존 STM32F4x 시리즈와 핀맵 호환하면서 가격및 성능을 줄인 버전으로 초기에 STM32F4로 개발하고 양산으로 STM32F401로 적용하면 좋을것 같다. 물론 하드웨어적으로 약간의 수정이 필요하다.






소매점에서 5천원대 이므로 양산구매시는 상당히 저렴해 질수 있을것 같다.






저작자 표시 비영리 변경 금지

STM32F429 - W5300 을 이용한 TCP/IP 전송 속도 테스트



STM32F429 는 최대 180Mhz로 구동된다. W5300을 이용하여 TCP/IP 전송 속도 테스트 결과 37Mbps 정도로 측정된다.




STM32F429 W5300 드라이버 코드

//-----------------------------------------------------------------------------

#define W5300_BANK_ADDR                 ((uint32_t)0x64000000)

#define W5300_DATA_ADDR                 (*(uint16_t *) (W5300_BANK_ADDR))

                                        

#define _W5300_DATA(p)                    (*(__IO uint16_t*) (W5300_BANK_ADDR + (p<<1)))


#define W5300_RST_PORT GPIOA

#define W5300_RST_BIT BIT9


#define IINCHIP_RSToff() cbi(W5300_RST_PORT, W5300_RST_BIT)

#define IINCHIP_RSTon() sbi(W5300_RST_PORT, W5300_RST_BIT)



#define W5300_IO_INIT()

//-----------------------------------------------------------------------------




저작자 표시 비영리 변경 금지

TM4C123 USB 테스트 - CAN2USB 테스트

[TI]/TM4C | 2014/08/17 22:30
Posted by nexp

TM4C123 USB 테스트 - CAN2USB 테스트



TM4C123은 기존 Crtex-M3 코어 시리즈인 LM3S5732 와 같이 USB Device, HOST를 지원하고 CAN통신이 가능하다.

USB를 지원하면서 CAN이 가능한 MCU중에서 저렴하고 사용하기 편리하기 때문에 USB2CAN 보드 제작하기에 좋을것 같다.



TM4C123 USB 관련 핀맵




TM4C123 USB 초기화 코드

void InitializeUsb(void)

{

    // Enable the GPIO peripheral used for USB, and configure the USB pins

ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);

ROM_GPIOPinTypeUSBAnalog(GPIO_PORTB_BASE, GPIO_PIN_0 | GPIO_PIN_1);    

ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);

ROM_GPIOPinTypeUSBAnalog(GPIO_PORTD_BASE, GPIO_PIN_4 | GPIO_PIN_5);

    

    // Initialize the transmit and receive buffers.

    USBBufferInit((tUSBBuffer *)&g_sTxBuffer);

    USBBufferInit((tUSBBuffer *)&g_sRxBuffer);



    // Pass our device information to the USB library and place the device

    // on the bus.

    USBDBulkInit(0, (tUSBDBulkDevice *)&g_sBulkDevice);    

}



TM4C123 USB 데이터 수신 처리 함수

//---------------------------------------------------------

//수신 데이터 처리 

//pvMsgData 는 수신된 데이터의 포인터

data = (unsigned char*)(pvMsgData);

for(i=0;i<ui32MsgValue;i++)

{

DebugPrint("%02X ", *(data+i));

}

DebugPrint("\r\n");


switch(*data)

{

case CMD_SET_LED:

Led1On();

break;

case CMD_RESET_LED:

Led1Off();

break;

case CMD_SET_LED2:

Led2On();

break;

case CMD_RESET_LED2:

Led2Off();

break;                

case CMD_READ_CAN_DATA:

USBBufferInit((tUSBBuffer *)&g_sTxBuffer);

    //CAN통신 데이터 처리

CANProcess(g_sTxBuffer);


    //USB 데이터 전송

USBBufferDataWritten(&g_sTxBuffer, 2);                

break;

}

//---------------------------------------------------------




USB2CAN 테스트 PC 프로그램
LM3S5732에서 작성 했던 프로그램을 동일하게 테스트 가능하다



TM4C123 USB2CAN 테스트 동영상


저작자 표시 비영리 변경 금지

TM4C123 - CAN 통신 테스트

[TI]/TM4C | 2014/08/17 19:00
Posted by nexp

TM4C123 - CAN 통신 테스트




TM4C123 은 2채널의 CAN 듈이 있다. 기존  Stellaris 시리즈와 거의 유사하게 되어 있어 기존 코드 수정없이 사용가능하다.

■ CAN protocol version 2.0 part A/B
■ Bit rates up to 1 Mbps
■ 32 message objects with individual identifier masks
■ Maskable interrupt
■ Disable Automatic Retransmission mode for Time-Triggered CAN (TTCAN) applications
■ Programmable Loopback mode for self-test operation
■ Programmable FIFO mode enables storage of multiple message objects
■ Gluelessly attaches to an external CAN interface through the CANnTX and CANnRX signals



TM4C123 의 CAN통신 핀맵



기존과 조금 다른 점으로 CAN 핀맵을 리맵 할 수 있다는 것인데.. 테스트를 위해 PB4, PB5에 할당해서 테스트 하기로 했다.

CAN0RX -> PB4

CAN0TX -> PB5



EVB_DSP 보드에서 







EXP_SM EVM 보드에서






코드는 기본적으로 LM3S 시리즈의 CAN통신 예제와 동일하다. 


TM4C123 CAN 초기화 함수

기존과 조금 달라진 점은 CAN 통신 속도 설정하는 부분이 좀더 간단히 처리할 수 있도록 되어 있다.

    //포트클럭 설정

    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);


    //CAN 포트 설정

    GPIOPinConfigure(GPIO_PB4_CAN0RX);

    GPIOPinConfigure(GPIO_PB5_CAN0TX);

    GPIOPinTypeCAN(GPIO_PORTB_BASE, GPIO_PIN_4 | GPIO_PIN_5);


    // CAN클럭 초기화

    SysCtlPeripheralEnable(SYSCTL_PERIPH_CAN0);


    // Initialize the CAN controller

    CANInit(CAN0_BASE);


    // CAN통신 속도 설정

    CANBitRateSet(CAN0_BASE, SysCtlClockGet(), 500000);



    // CAN interrupts 설정

    CANIntEnable(CAN0_BASE, CAN_INT_MASTER | CAN_INT_ERROR | CAN_INT_STATUS);

    IntEnable(INT_CAN0);


    // Enable the CAN for operation.

    CANEnable(CAN0_BASE);



CAN 메세지 전송하기
CAN데이터를 전송하려면 먼저 CAN Message Object를 초기화하고 전송해야 한다.

tCANMsgObject g_MsgObjectRx;

//메세지 오브젝트 초기화
void CANConfigureNetwork(void)
{
    //TX용 CAN 메시제 오프젝트 초기화
    g_MsgObjectTx.ulMsgID = 0x02;   //CAN ID
    g_MsgObjectTx.ulMsgIDMask = 0;

    //인터럽트 설정
    g_MsgObjectTx.ulFlags = MSG_OBJ_TX_INT_ENABLE;

    //메세지 크기
    g_MsgObjectTx.ulMsgLen = MAX_CAN_MSG_SIZE;
    //메시지 버퍼 설정
    g_MsgObjectTx.pucMsgData = g_CanTxMsgBuffer;
}

//CAN 메세지 전송
void SendCanMsg(unsigned char MsgId, unsigned char ucEvent, unsigned char Data)
{
    //MsgId : Message Object의 번호(수신측에서는 의미없는 값이다.)
 
    g_MsgObjectTx.pucMsgData[0] = ucEvent;
    g_MsgObjectTx.pucMsgData[1] = Data;

 /*
    //필요에 따라서 설정
    g_MsgObjectTx.pucMsgData[2] = 0;
    g_MsgObjectTx.pucMsgData[3] = 0;
 
    g_MsgObjectTx.pucMsgData[4] = 0;
    g_MsgObjectTx.pucMsgData[5] = 0;
    g_MsgObjectTx.pucMsgData[6] = 0;
    g_MsgObjectTx.pucMsgData[7] = 0;
 */ 
 
    CANMessageSet(CAN0_BASE, MsgId, &g_MsgObjectTx, MSG_OBJ_TYPE_TX);
}




CAN메세지 수신하기
CAN데이터를 전송하려면 먼저 CAN Message Object를 초기화 해야 수신할 수 있다. 수신하고 싶은 ID를 msg.ulMsgID 에 정의 하고 CANMessageSet()함수로 설정 할 수 있다. 물론 message object개수(1~32)만큼 설정 가능하다.

//메세지 오브젝트 초기화
void CANConfigureNetwork(void)
{
 tCANMsgObject msg;

    //수신할 CAN ID
    msg.ulMsgID = 0x02;
    msg.ulMsgIDMask = 0;//0xFF;

    //인터럽트 사용
    msg.ulFlags = MSG_OBJ_RX_INT_ENABLE;

    //수신할 버퍼와 크기
    msg.ulMsgLen = MAX_CAN_MSG_SIZE;
    msg.pucMsgData = g_CanTxMsgBuffer;

    //수신할 message object 초기화 (message object : 1~32)
    CANMessageSet(CAN0_BASE, 1, &msg, MSG_OBJ_TYPE_RX);
}



CAN 인터럽트 핸들러

void CANHandler(void)
{
    unsigned long rx_id_status;

    //CAN 인터럽트의 상태값을 읽어온다
    rx_id_status = CANIntStatus(CAN0_BASE, CAN_INT_STS_CAUSE);
    
     //읽은후 지운다
    CANIntClear(CAN0_BASE, rx_id_status); 
      
 //CAN 인터럽트 처리
 if(rx_id_status)
 {
  //message object 깂을 읽어온다 - 읽어오면 지워진다
  CANMessageGet(CAN0_BASE, rx_id_status, &g_MsgObjectRx, 1);
  
  DebugPrint("[ID%02X %02X:%02x:%02x] : ", 
        rx_id_status,    //message object 번호
     g_MsgObjectRx.ulMsgID,  //수신한 CAN ID
     g_MsgObjectRx.ulMsgIDMask,
     g_MsgObjectRx.ulMsgLen 
     );

  //수신한 데이터 출력
  DebugPrint("%02x %02x %02x %02x | %02x %02x %02x %02x\r\n", 
    g_MsgObjectRx.pucMsgData[0],
    g_MsgObjectRx.pucMsgData[1],
    g_MsgObjectRx.pucMsgData[2],
    g_MsgObjectRx.pucMsgData[3],
    g_MsgObjectRx.pucMsgData[4],
    g_MsgObjectRx.pucMsgData[5],
    g_MsgObjectRx.pucMsgData[6],
    g_MsgObjectRx.pucMsgData[7]    
    ); 
 }
}




저작자 표시 비영리 변경 금지

TM4C123 - ADC 테스트

[TI]/TM4C | 2014/08/10 14:10
Posted by nexp

TM4C123 - ADC 테스트




TM4C123에는 독릭적으로 동작하는 2개의 12비트 ADC가 있고 16채널 입력이 가능하다.

아래 그림과 같이 각각 인터럽트 처리 가능하고 트리거 입력 받을수 있다.



요즘 MCU들은 대부분 하드웨어 필터를 내장하고 있는데...  TM4C123은 하드웨어 평균필터 (Hardware averaging of up to 64 samples) 가 있다. 성능은 좀더 들여야 봐야 하겠지만 약간은 아쉬운 부분이 아날로그 파트인것 같다.





TM4C123 ADC 블록도

4개의 FIFO와 Sample Sequencer이 있다.

[TM4C123 EVM] 보드에서 ADC0는 PE3 에 연결되어 있고 원하는 ADC 채널 및 Sequencer에서 AD결과값을 읽어올 수 있다.



TM4C123에는 4개의 Sample Sequencer이 있고 아래과 같이 1~8 스텝을 설정 할 수가 있다.





TM4C123 ADC 테스트 예제

 4개의 Sample Sequencer가 있기 때문에 다채널 ADC입력 받을경우 상당히 편리하게 처리할 수 있다.


//sample sequence 1 에 steps 0, 1 , 2를 설정

ADCSequenceStepConfigure(ADC_BASE, 1, 0, ADC_CTL_CH0);

ADCSequenceStepConfigure(ADC_BASE, 1, 1, ADC_CTL_CH1);

ADCSequenceStepConfigure(ADC_BASE, 1, 2, ADC_CTL_CH2 | ADC_CTL_IE | ADC_CTL_END)


//sample sequence 3에  step 0를 설정

ADCSequenceStepConfigure(ADC_BASE, 3, 0, ADC_CTL_TS | ADC_CTL_END);




TM4C123 ADC 핀맵

12개의 ADC입력 채널이 아래와 같이 할당되어 있다.




TM4C123 ADC 초기화 함수

// Function Routine

//ADC Initialize

void AdcInit(void)

{

    //ADC enable 

    SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);


    //ADCProcessorTrigger()에서 ADC 시작. 프로세서 트리거가 일어날때 작동한다.   

    ADCSequenceConfigure(ADC0_BASE, SEQUENCE_NUM, ADC_TRIGGER_PROCESSOR, 0);

    

    //ADC0의 sequence를 구성한다.sequence number 0인 ADC를 single ended mode로 setting   

    ADCSequenceStepConfigure(ADC0_BASE, SEQUENCE_NUM, 0, ADC_CTL_IE | ADC_CTL_END | ADC_CTL_CH0);       


    //ADC를 사용 가능하게 해준다.   

   ADCSequenceEnable(ADC0_BASE, SEQUENCE_NUM);  

   ADCIntClear(ADC0_BASE, SEQUENCE_NUM);

}



TM4C123 ADC 데이터 읽기

//Read ADC Value

unsigned long AdcRead(unsigned char port)

{

unsigned long adc_result[NUM_OF_ADC];

ADCProcessorTrigger(ADC0_BASE, SEQUENCE_NUM);   


//sample sequence 가 완료될때 까지 대기한다.   

while(!ADCIntStatus(ADC0_BASE, SEQUENCE_NUM, false)){}  

    ADCIntClear(ADC0_BASE, SEQUENCE_NUM);


//ADC  Data Read

    ADCSequenceDataGet(ADC0_BASE, SEQUENCE_NUM, &adc_result);

return adc_result[port];

}




TM4C123 ADC 하드웨어 필터 설정


// Enable 8x hardware averaging

ADCHardwareOversampleConfigure(ADC_BASE, 8);





TM4C123 ADC - 온도 센서

TM4C123 칩내부에 온도 센서가 내장되어 있고 이를 이용하여 온도 측정을 할수 있다. 

온도 센서에서 온도 값을 구하는 식은 아래와 







        ADCIntClear(ADC0_BASE, 1);

        ADCProcessorTrigger(ADC0_BASE, 1);

        while(!ADCIntStatus(ADC0_BASE, 1, false))

        {

        }

        ADCSequenceDataGet(ADC0_BASE, 1, ui32ADC0Value);

        ui32TempAvg = (ui32ADC0Value[0] + ui32ADC0Value[1] + ui32ADC0Value[2] + ui32ADC0Value[3] + 2)/4;

        ui32TempValueC = (1475 - ((2475 * ui32TempAvg)) / 4096)/10;

        ui32TempValueF = ((ui32TempValueC * 9) + 160) / 5;

        

        DebugPrint("AIN0 = %d, %d\r", ui32TempAvg, ui32TempValueC);

        

        Led1On();

        Delay(300);

        Led1Off();

        Delay(300);   




저작자 표시 비영리 변경 금지

블로그 이미지

nexp

카테고리

분류 전체보기 (1448)
[MyProject] (32)
[TI] (73)
[NXP] (36)
[ST_MICRO] (88)
[FreeScale] (30)
[MSP430] (116)
[Microchip] (121)
Cortex-M (36)
[AnalogDevice] (22)
ARM9 (24)
[ARM7] (47)
[AVR] (80)
[DSP] (111)
[8051] (21)
[MCU] (48)
[INTERFACE] (208)
[AppBoard] (23)
[ROBOT] (25)
[MODULE] (121)
[SENSOR] (40)
[DATA] (21)
[FPGA/PLD] (29)
[EVB] (1)
[Proramming] (38)
[MyLog] (6)
[IDEA] (0)
[Utility] (19)
[Book] (24)
취미생활 (4)
[Link] (2)

티스토리 툴바